| 注册
首页|期刊导航|自然资源遥感|一种融合上下文语义信息与边缘特征的海陆分割方法

一种融合上下文语义信息与边缘特征的海陆分割方法

文甜甜 普运伟 赵文翔

自然资源遥感2025,Vol.37Issue(5):62-72,11.
自然资源遥感2025,Vol.37Issue(5):62-72,11.DOI:10.6046/zrzyyg.2024286

一种融合上下文语义信息与边缘特征的海陆分割方法

A sea-land segmentation method combining contextual semantic information and edge features

文甜甜 1普运伟 2赵文翔1

作者信息

  • 1. 昆明理工大学国土资源工程学院,昆明 650093
  • 2. 昆明理工大学国土资源工程学院,昆明 650093||昆明理工大学信息工程与自动化学院,昆明 650500
  • 折叠

摘要

Abstract

In optical remote sensing images with complex scenes and rich land cover information,the sea-land segmentation faces challenges such as low positioning accuracy and blurred edges.Therefore,this paper proposed a deep convolutional network model and a sea-land segmentation method that integrate contextual semantic information and edge features.First,the rich target semantic information was extracted from remote sensing images using the FusionNet semantic segmentation network module.Then,multi-scale and hierarchical contextual semantic features were extracted from the segmentation network using the enhanced atrous spatial pyramid pooling(ASPP)module and contextual attention module.Additionally,an edge extraction sub-network was built to extract multi-scale edge features.Finally,the semantic features and edge features were combined through a fusion module,thereby achieving accurate sea-land segmentation.This method was tested with two typical representative datasets.The results showed that this method achieved an overall prediction accuracy of 98.21%,an F1 score of 97.64%,and a boundary F1 score of 89.36%,all significantly outperforming other models.Particularly in complex backgrounds,this method can effectively improve the accuracy of segmentation and edge detection,demonstrating definite advantages in the segmentation of artificial coastlines and ports.

关键词

海陆分割/边缘提取/语义分割/多任务学习/上下文注意力模块

Key words

sea-land segmentation/edge extraction/semantic segmentation/multi-task learning/contextual atten-tion module

分类

计算机与自动化

引用本文复制引用

文甜甜,普运伟,赵文翔..一种融合上下文语义信息与边缘特征的海陆分割方法[J].自然资源遥感,2025,37(5):62-72,11.

自然资源遥感

OA北大核心

2097-034X

访问量0
|
下载量0
段落导航相关论文