| 注册
首页|期刊导航|自然资源遥感|基于视觉双驱动认知的高分辨率遥感影像自学习分割方法

基于视觉双驱动认知的高分辨率遥感影像自学习分割方法

吴志军 任超锋 顾俊凯 彭晓东 陶翊婷 丛铭 许妙忠 韩玲 崔建军 赵超英 席江波 杨成生 丁明涛

自然资源遥感2025,Vol.37Issue(5):73-90,18.
自然资源遥感2025,Vol.37Issue(5):73-90,18.DOI:10.6046/zrzyyg.2024206

基于视觉双驱动认知的高分辨率遥感影像自学习分割方法

Self-learning segmentation of high-resolution remote sensing images based on visual dual-drive cognition

吴志军 1任超锋 1顾俊凯 1彭晓东 1陶翊婷 2丛铭 1许妙忠 2韩玲 1崔建军 1赵超英 1席江波 1杨成生 1丁明涛1

作者信息

  • 1. 长安大学地测学院,西安 710064
  • 2. 武汉大学测绘遥感信息工程国家重点实验室,武汉 430072
  • 折叠

摘要

Abstract

The current high-resolution remote sensing images involve complex scenes that are difficult to analyze.Meanwhile,owing to the diverse scenes,there is a lack of accurate reference obtained from the sample database.Therefore,this paper proposed a self-learning segmentation method for high-resolution remote sensing images,with reference to the visual dual-drive cognition mechanism.Based on the principle of visual perception,this method interpreted the typical ground objects in the scene through unsupervised adaptive analysis.In addition,it achieved self-learning identification of typical ground objects by integrating a neural network.Finally,the segmentation results were self-checked and corrected by combining unsupervised analysis and neural network learning.Using real high-resolution remote sensing image data containing complex ground scenes,the comparative experiments were conducted between the proposed method and two popular deep neural network segmentation methods:mask region-based convolutional neural network(Mask R-CNN)and scalable vision transformer(ScalableViT).The results showed that the proposed method can maintain robust and reliable segmentation accuracy,and outperformed others in terms of ground object cognition,generalization performance,and anti-interference ability.As such,it proved to be a cost-effective and practical approach.

关键词

视觉仿生/高分辨率遥感/影像分割/非监督分析/深度学习神经网络/自学习方法

Key words

bionic visual/high-resolution remote sensing/image segmentation/unsupervised analysis/deep learn-ing neural network/self-learning method

分类

计算机与自动化

引用本文复制引用

吴志军,任超锋,顾俊凯,彭晓东,陶翊婷,丛铭,许妙忠,韩玲,崔建军,赵超英,席江波,杨成生,丁明涛..基于视觉双驱动认知的高分辨率遥感影像自学习分割方法[J].自然资源遥感,2025,37(5):73-90,18.

基金项目

陕西省教育厅服务地方专项计划项目"工程外部空间遥感信息获取、建模、解译与信息智慧管控关键技术研究"(编号:23JE002)、国家科技部的国家重点研发计划项目"陆路交通基础设施智能化设计共性关键技术"课题一"北斗定位与空天地集成高精度智能测绘技术"(编号:2021YFB2600401)、国家自然科学基金项目"基于动态宽度与深度学习的多源异构数据下高山峡谷区链生地质灾害智能识别研究"(编号:42371356)、国家重点研发计划子课题"重大崩滑隐患多源精准识别与InSAR精细监测技术及应用示范"(编号:2021YFC3000404-01)、陕西省林业科技创新计划专项"基于高光谱遥感深度学习的林地增损监测技术研究"(编号:SXLK2021-0225)和国家自然科学基金项目"基于多源异构时空数据融合的黄土区滑坡智能识别研究"(编号:42171348)共同资助. (编号:23JE002)

自然资源遥感

OA北大核心

2097-034X

访问量0
|
下载量0
段落导航相关论文