| 注册
首页|期刊导航|自然资源遥感|改进的残差式3D-CNN和近邻注意力的高光谱遥感图像分类

改进的残差式3D-CNN和近邻注意力的高光谱遥感图像分类

潘增滢 吴瑞姣 林易丰 翁谦 林嘉雯

自然资源遥感2025,Vol.37Issue(5):101-112,12.
自然资源遥感2025,Vol.37Issue(5):101-112,12.DOI:10.6046/zrzyyg.2024191

改进的残差式3D-CNN和近邻注意力的高光谱遥感图像分类

Hyperspectral remote sensing image classification using improved residual 3D-CNN and neighborhood attention

潘增滢 1吴瑞姣 2林易丰 1翁谦 3林嘉雯3

作者信息

  • 1. 福州大学计算机与大数据学院,福州 350116||福州大学福建省网络计算与智能信息处理重点实验室,福州 350116
  • 2. 福建省地质测绘院,福州 350116
  • 3. 福州大学计算机与大数据学院,福州 350116||福州大学福建省网络计算与智能信息处理重点实验室,福州 350116||福州大学空间数据挖掘与信息共享教育部重点实验室,福州 350116
  • 折叠

摘要

Abstract

Hyperspectral remote sensing image classification has attracted widespread attention,yet the performance of classification methods remains greatly limited by challenges such as spectral variability(same object with different spectra),spectral confusion(different objects with similar spectra),and limited availability of training samples.To fully exploit the spatial-spectral features of hyperspectral images,this study proposed an improved network integrating residual convolution and neighborhood attention mechanisms.The proposed method consists of:(1)a residual-based spectral feature extraction module combining residual connections and a 3D convolutional neural network(3D-CNN);(2)a spatial-spectral feature fusion module using mixed convolutions;and(3)a neighborhood attention module designed to enhance the model's ability to focus on homogeneous regions.Experiments were conducted on three public hyperspectral datasets-Indian Pines,Pavia University,and Houston 2013.The results demonstrate that the proposed method achieves higher classification accuracy compared to recent state-of-the-art approaches.Using less than 10%of the samples for training,it attains overall accuracies of 99.39%,99.67%,and 98.64%,respectively,confirming its capability for high-accuracy classification under small-sample conditions.

关键词

高光谱图像分类/卷积神经网络/残差连接/近邻注意力

Key words

hyperspectral image classification/convolutional neural network/residual connection/neighborhood at-tention

分类

计算机与自动化

引用本文复制引用

潘增滢,吴瑞姣,林易丰,翁谦,林嘉雯..改进的残差式3D-CNN和近邻注意力的高光谱遥感图像分类[J].自然资源遥感,2025,37(5):101-112,12.

基金项目

福建省自然科学基金项目"人机协同的自然资源要素提取关键技术研究"(编号:2023J01432)和国家自然科学基金项目"基于深度迁移学习网络的高分影像土地利用分类方法研究"(编号:41801324)共同资助. (编号:2023J01432)

自然资源遥感

OA北大核心

2097-034X

访问量1
|
下载量0
段落导航相关论文