| 注册
首页|期刊导航|自然资源遥感|利用C-LSTM的时序InSAR地表形变趋势分析及预测方法

利用C-LSTM的时序InSAR地表形变趋势分析及预测方法

文艺 张玲 孔含泉 万祥星 葛大庆 刘斌

自然资源遥感2025,Vol.37Issue(5):141-151,11.
自然资源遥感2025,Vol.37Issue(5):141-151,11.DOI:10.6046/zrzyyg.2024299

利用C-LSTM的时序InSAR地表形变趋势分析及预测方法

Trend analysis and prediction method of ground deformation using TS-InSAR-based combination-long short-term memory

文艺 1张玲 2孔含泉 3万祥星 2葛大庆 2刘斌2

作者信息

  • 1. 中国自然资源航空物探遥感中心,北京 100083||自然资源部航空地球物理与遥感地质重点实验室,北京 100083||自然资源部地质灾害隐患遥感识别与监测工程技术创新中心,北京 100083||中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
  • 2. 中国自然资源航空物探遥感中心,北京 100083||自然资源部航空地球物理与遥感地质重点实验室,北京 100083||自然资源部地质灾害隐患遥感识别与监测工程技术创新中心,北京 100083
  • 3. 黑龙江省地质测绘地理信息院,哈尔滨 150030
  • 折叠

摘要

Abstract

Time-series interferometric synthetic aperture radar(TS-InSAR)technology has been widely used in ground deformation monitoring and prediction.However,current research remains insufficient in the correlation and temporal lag between groundwater and ground deformation.Moreover,InSAR-based prediction models for ground deformation mostly rely on a single InSAR data,which limits the prediction accuracy and generalization ability of the models.To address these challenges,this study proposed a combination-long short-term memory(C-LSTM)model that integrates groundwater level,rainfall,and InSAR deformation data.This model was employed to evaluate the prediction and accuracy of single-factor and multi-factor models,respectively.The results revealed a temporal lag between ground deformation and changes in groundwater level.The optimal feature combination,obtained through model training using groundwater and rainfall data,exhibited significant improvements in prediction accuracy compared to single-factor predictions,with the coefficient of determination(R2)increasing by 2.45%,1.52%,4.16%,8.08%,5.08%,and 1.45%respectively.The model enhances the prediction accuracy of ground deformation by incorporating model feature combinations with high correlation with ground deformation.

关键词

时序InSAR/地表形变/相关性分析/C-LSTM

Key words

time-series interferometric synthetic aperture radar(TS-InSAR)/ground deformation/correlation a-nalysis/combination-long short-term memory(C-LSTM)

分类

信息技术与安全科学

引用本文复制引用

文艺,张玲,孔含泉,万祥星,葛大庆,刘斌..利用C-LSTM的时序InSAR地表形变趋势分析及预测方法[J].自然资源遥感,2025,37(5):141-151,11.

基金项目

中国自然资源航空物探遥感中心青年创新基金"多维观测下滑坡InSAR时序监测与形变分解方法"(编号:2023YFL26)和国家重点研发计划项目"广域重大地质灾害隐患综合遥感识别技术研发"(编号:2021YFC3000400)共同资助. (编号:2023YFL26)

自然资源遥感

OA北大核心

2097-034X

访问量0
|
下载量0
段落导航相关论文