利用C-LSTM的时序InSAR地表形变趋势分析及预测方法OA北大核心
Trend analysis and prediction method of ground deformation using TS-InSAR-based combination-long short-term memory
时序合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术已广泛应用于地表形变监测与预测,但目前在地下水与地表形变趋势的相关性及其时间滞后性分析研究方面尚显不足,此外,InSAR地表形变趋势预测模型多依赖于单一InSAR信息,限制了模型的预测精度和泛化能力.针对上述问题,该文提出了一种结合地下水位、降雨量和InSAR形变信息的基于排列组合长短期记忆网络(combination-long short-term memory,C-LSTM)模型,分别对单因子模型和多因子模型的预测精度进行评价.分析发现,地表形变与地下水位变化间存在滞后关系,利用地下水和降雨量通过模型训练得到的最优特征组合,其预测结果与实际地表形变相比决定系数(R2)分别较单一特征因子预测结果提高了 2.45%,1.52%,4.16%,8.08%,5.08%和 1.45%.通过增加与地表形变相关性高的模型特征组合,提升了对地表形变区域预测的准确性.
Time-series interferometric synthetic aperture radar(TS-InSAR)technology has been widely used in ground deformation monitoring and prediction.However,current research remains insufficient in the correlation and temporal lag between groundwater and ground deformation.Moreover,InSAR-based prediction models for ground deformation mostly rely on a single InSAR data,which limits the prediction accuracy and generalization ability of the models.To address these challenges,this study proposed a combination-long short-term memory(C-LSTM)model that integrates groundwater level,rainfall,and InSAR deformation data.This model was employed to evaluate the prediction and accuracy of single-factor and multi-factor models,respectively.The results revealed a temporal lag between ground deformation and changes in groundwater level.The optimal feature combination,obtained through model training using groundwater and rainfall data,exhibited significant improvements in prediction accuracy compared to single-factor predictions,with the coefficient of determination(R2)increasing by 2.45%,1.52%,4.16%,8.08%,5.08%,and 1.45%respectively.The model enhances the prediction accuracy of ground deformation by incorporating model feature combinations with high correlation with ground deformation.
文艺;张玲;孔含泉;万祥星;葛大庆;刘斌
中国自然资源航空物探遥感中心,北京 100083||自然资源部航空地球物理与遥感地质重点实验室,北京 100083||自然资源部地质灾害隐患遥感识别与监测工程技术创新中心,北京 100083||中国矿业大学(北京)地球科学与测绘工程学院,北京 100083中国自然资源航空物探遥感中心,北京 100083||自然资源部航空地球物理与遥感地质重点实验室,北京 100083||自然资源部地质灾害隐患遥感识别与监测工程技术创新中心,北京 100083黑龙江省地质测绘地理信息院,哈尔滨 150030中国自然资源航空物探遥感中心,北京 100083||自然资源部航空地球物理与遥感地质重点实验室,北京 100083||自然资源部地质灾害隐患遥感识别与监测工程技术创新中心,北京 100083中国自然资源航空物探遥感中心,北京 100083||自然资源部航空地球物理与遥感地质重点实验室,北京 100083||自然资源部地质灾害隐患遥感识别与监测工程技术创新中心,北京 100083中国自然资源航空物探遥感中心,北京 100083||自然资源部航空地球物理与遥感地质重点实验室,北京 100083||自然资源部地质灾害隐患遥感识别与监测工程技术创新中心,北京 100083
计算机与自动化
时序InSAR地表形变相关性分析C-LSTM
time-series interferometric synthetic aperture radar(TS-InSAR)ground deformationcorrelation a-nalysiscombination-long short-term memory(C-LSTM)
《自然资源遥感》 2025 (5)
141-151,11
中国自然资源航空物探遥感中心青年创新基金"多维观测下滑坡InSAR时序监测与形变分解方法"(编号:2023YFL26)和国家重点研发计划项目"广域重大地质灾害隐患综合遥感识别技术研发"(编号:2021YFC3000400)共同资助.
评论