可控加载功能梯度材料设计程序改进与高通量优化设计OA北大核心
Improvement of the Design Program for Functionally Graded Materials with Controllable Loading and High-Throughput Optimization Design
为了实现梯度材料高通量优化设计,需要梯度材料加载性能的准确性和快速预测能力.人工智能技术结合飞速发展的硬件条件已逐渐成为不同学科领域的革命性研究工具.在材料科学领域,机器学习方法在材料的高通量设计和性能的高通量预测方面均发挥着巨大作用.在可控加载梯度材料优化设计中引入机器学习方法,结合基于物理模型的计算结果,建立了较为准确的快速预测模型,显著提高了优化计算通量.多物质流体弹塑性计算程序MLEP在梯度材料实验设计和数据解读中已经过多轮校验,对实验结果具有较高的预测精度,基于该程序的数值实验样本可以建立高精度的代理模型.为了使MLEP可以应用于更宽范围的密度梯度材料设计及实验预测,在现有模拟程序中加入了p-α 模型,用于描述低密度聚合物在冲击/准等熵加载中的力学行为,可以实现飞片密度从 0.5 g/cm3 左右增大至 15.0 g/cm3.
To achieve high-throughput optimization design of gradient materials,it is essential to establish accurate and rapid predictive capabilities for the loading performance of such materials.The rapid advancement of artificial intelligence technology combined with hardware development has gradually become a revolutionary research tool across various scientific fields.In materials science,machine learning methods play a significant role in high-throughput material design and performance prediction.This study introduces machine learning methods into the optimization design of functionally graded materials with controllable loading.By integrating computational results from physics-based models,a relatively accurate rapid prediction model was established,significantly enhancing optimization throughput.The multi-material fluid-elastoplastic computational program MLEP has undergone multiple rounds of validation in the experimental design and data interpretation of gradient materials,demonstrating high predictive accuracy for experimental results.Numerical experimental samples based on this program can be used to construct high-precision surrogate models.To extend MLEP's applicability to a broader range of density-gradient material design and experimental prediction,the p-α model has been incorporated into the existing simulation framework.This model describes the mechanical behavior of low-density polymers under shock/quasi-isentropic loading,enabling the expansion of flyer plate density from approximately 0.5 g/cm3 to 15.0 g/cm3.
李蕾;陈翰;柏劲松;张睿智;张建;吴楯
中国工程物理研究院流体物理研究所,四川 绵阳 621999中国工程物理研究院流体物理研究所,四川 绵阳 621999中国工程物理研究院流体物理研究所,四川 绵阳 621999武汉理工大学材料复合新技术全国重点实验室,湖北 武汉 430070武汉理工大学材料复合新技术全国重点实验室,湖北 武汉 430070中国工程物理研究院流体物理研究所,四川 绵阳 621999
力学
功能梯度材料机器学习高通量设计
functional gradient materialsmachine learninghigh-throughput optimization
《高压物理学报》 2025 (11)
36-45,10
国家重点研发计划(2021YFB3802300)
评论