首页|期刊导航|高压物理学报|基于小样本机器学习加速有限元分析TiN/Ti多层涂层的动态冲击响应

基于小样本机器学习加速有限元分析TiN/Ti多层涂层的动态冲击响应OA北大核心

Accelerating Finite Element Analysis of Dynamic Impact Response of TiN/Ti Multilayer Coatings Based on Small Sample Machine Learning

中文摘要英文摘要

服役于极端环境下的发动机高压涡轮叶片,因长期承受高温燃气携带的沙尘颗粒的高速撞击,使役寿命会大幅降低.TiN/Ti多层涂层凭借其高硬、高韧的特性成为叶片表面涂层的首选材料.然而,其抗冲蚀性能与其结构参数紧密相关,传统的实验试错法与有限元模拟往往耗时耗力.为了解决这一困境,提出了一个基于小样本机器学习(machine learning,ML)与有限元分析融合的TiN/Ti多层涂层设计框架.评估了多种回归算法,并优选出高斯过程回归模型,实现了涂层在动态冲击下的层内最大应力与基体最大塑性应变的高精度预测(决定系数R2分别为 0.88 和 0.85).结合残差与不确定性分析,进一步强化了模型的拟合能力.此外,通过SHAP(shapley additive explanations)模型分析揭示各特征对目标的影响.最终设计了 8 种新的结构与冲击条件下的涂层仿真模型,并验证了ML模型预测结果的准确性.该框架为高维参数空间下涂层抗冲击设计提供了数据高效、计算经济的解决方案.

Engine high-pressure turbine blades operating in extreme environments,such as deserts,are subjected to long-term high-velocity impacts from sand particles carried by hot combustion gases,significantly reducing their service life.Owing to its high hardness and toughness,the TiN/Ti multilayer coating has emerged as a preferred surface coating material for such blades.However,its erosion resistance is highly dependent on structural parameters,and traditional experimental trial-and-error methods and finite element simulations are often time-consuming and labor-intensive.To address this challenge,this study proposes a TiN/Ti multilayer coating design framework that integrates small-sample machine learning(ML)with finite element analysis.Multiple regression algorithms were evaluated,and Gaussian process regression(GPR)was selected for its superior performance,enabling high-accuracy prediction of the maximum intralayer stress and the maximum plastic strain in the substrate under dynamic impact conditions(with R2 values of 0.88 and 0.85,respectively).The modelʼs fitting capability was further enhanced through residual and uncertainty analyses.Moreover,shapley additive explanations(SHAP)analysis was employed to elucidate the contribution of each feature to the target variables.Finally,eight new coating structures under varying impact conditions were designed and simulated to validate the predictive accuracy of the ML model.This framework offers a data-efficient and computationally economical solution for impact-resistant coating design in high-dimensional parameter spaces.

詹研;许柄权;彭健;王传彬

武汉理工大学材料复合新技术全国重点实验室,湖北 武汉 430070||湖北省先进复合材料技术创新中心,湖北 武汉 430070武汉理工大学材料复合新技术全国重点实验室,湖北 武汉 430070||湖北省先进复合材料技术创新中心,湖北 武汉 430070武汉理工大学材料复合新技术全国重点实验室,湖北 武汉 430070||湖北省先进复合材料技术创新中心,湖北 武汉 430070武汉理工大学材料复合新技术全国重点实验室,湖北 武汉 430070||湖北省先进复合材料技术创新中心,湖北 武汉 430070

数学

TiN/Ti多层涂层机器学习有限元分析动态冲击

TiN/Ti multilayer coatingmachine learningfinite element analysisdynamic impact

《高压物理学报》 2025 (11)

103-117,15

基础加强计划重点基础研究项目(2022-JCJQ-ZD-172-00)

10.11858/gywlxb.20251132

评论