首页|期刊导航|纺织工程学报|基于多头注意力机制和长短时记忆网络的布匹产量预测模型

基于多头注意力机制和长短时记忆网络的布匹产量预测模型OA

Fabric production prediction model based on a multi-head attention mechanism and a long-short term memory network

中文摘要英文摘要

随着我国纺织行业的发展,布匹产量的预测面临着越来越复杂的挑战.传统的预测模型无法有效地捕捉不同时间段对产量预测的影响,导致预测结果的精度不高,且模型的收敛时间较长.为了解决这一问题,提出了一种基于多头注意力机制(MHAM)和长短时记忆网络(LSTM)结合的布匹产量预测模型.通过引入MHAM机制,模型能够为不同时间段的布匹产量数据分配不同的权重,从而有效地筛选出对未来产量预测影响较大的时间点.MHAM机制的引入有助于减少模型的训练时间并提高预测的精度.LSTM网络则进一步优化了模型在时间序列数据中的表现,能够捕捉长时间跨度中的长期依赖性.实验结果表明:引入MHAM机制的模型相较于传统LSTM模型在预测精度上取得了显著的提高,R2系数最高可达到0.995;在布类纺织品产量的月度预测中,与传统的BP和RNN模型,SE-Bi-LSTM模型的误差最小,其平均误差为0.22%,分别降低了60.71%和53.19%.

With the development of China's textile industry,the prediction of fabric production is facing increas-ingly complex challenges.Traditional prediction models cannot effectively capture the impact of different time periods on production forecasts,resulting in inaccurate prediction results and a long model convergence time.To address this problem,a fabric production prediction model(MHAM-LSTM)is proposed based on a combina-tion of a multi-head attention mechanism(MHAM)and a long short-term memory network(LSTM).By intro-ducing the MHAM mechanism,the model can assign different weights to fabric production data in different time periods,thereby effectively screening out time points that have a greater impact on future production fore-casts.The introduction of the MHAM mechanism helps to reduce the training time of the model and improve the accuracy of the prediction.The LSTM network further optimizes the model's performance in time series data and can capture long-term dependencies over a long period of time.Experimental results show that the model with the MHAM mechanism introduced has achieved a significant improvement in prediction accuracy com-pared to the traditional LSTM model,with an R2 coefficient of up to 0.995.In the monthly prediction of textile production,the SE-Bi-LSTM model has the smallest error compared to the traditional BP and RNN models,with an average error of 0.22%,a reduction of 60.71%and 53.19%respectively.

蔡展文;肖志权

武汉纺织大学机械工程与自动化学院,武汉 430200武汉纺织大学机械工程与自动化学院,武汉 430200

轻工业

多头注意力机制长短时记忆网络布匹产量预测评价指标

multi-head attention mechanismlong-short term memory networkfabricproduction forecasteval-uation index

《纺织工程学报》 2025 (5)

73-81,9

评论