| 注册
首页|期刊导航|湖南大学学报(自然科学版)|基于卷积自编码器的综合传动异常检测研究

基于卷积自编码器的综合传动异常检测研究

贾然 吴傲 陈涛 郝乃芃 王立勇 赵津

湖南大学学报(自然科学版)2025,Vol.52Issue(10):99-107,9.
湖南大学学报(自然科学版)2025,Vol.52Issue(10):99-107,9.DOI:10.16339/j.cnki.hdxbzkb.2025210

基于卷积自编码器的综合传动异常检测研究

Research on Integrated Transmission Anomaly Detection Based on Convolutional Autoencoder

贾然 1吴傲 1陈涛 1郝乃芃 1王立勇 1赵津2

作者信息

  • 1. 北京信息科技大学 现代测控技术教育部重点实验室,北京 100192
  • 2. 北京福田康明斯发动机有限公司,北京 102206
  • 折叠

摘要

Abstract

To address the challenges in the integrated transmission devices of special vehicle working process,including complex data,the imbalance between normal and abnormal data and the high false alarm and underreporting rates of traditional statistical methods in detecting sensor anomalies,a new method,called ACA-SVM anomaly detection method,combining an attention mechanism convolutional autoencoder(ACA)with a support vector machine(SVM)is proposed.Using operation data from armored tracked vehicles,the monitoring data from integrated transmission sensors is preprocessed.Key features in the transmission data are identified and focused by the attention mechanism.The convolutional autoencoder(CAE)then reduces the dimensionality of the original data and extracts features to facilitate data detection,resulting in the calculation of reconstruction errors and eigenvalues.The support vector machine classifies and calculates the abnormal scores of the training set data samples,and the detection performance is compared with the traditional anomaly detection models.Experimental results show that the proposed ACA-SVM method outperforms CAE,gated recurrent unit(GRU),and other models in detecting anomalies in the integrated transmission data of special vehicles,achieving a detection accuracy of 97.2%and an F1 of 0.976.

关键词

异常检测/传动装置/漏油故障/卷积自编码器/注意力机制

Key words

anomaly detection/transmission device/oil leakage/convolutional autoencoder/attention mechanism

分类

计算机与自动化

引用本文复制引用

贾然,吴傲,陈涛,郝乃芃,王立勇,赵津..基于卷积自编码器的综合传动异常检测研究[J].湖南大学学报(自然科学版),2025,52(10):99-107,9.

基金项目

北京市教委科研计划科技一般项目(KM202311232006),Beijing Municipal Commission of Education Science Research Program General Science and Technology Project(KM202311232006) (KM202311232006)

国家自然科学基金资助项目(52175074),National Natural Science Founda-tion of China(52175074) (52175074)

湖南大学学报(自然科学版)

OA北大核心

1674-2974

访问量0
|
下载量0
段落导航相关论文