| 注册
首页|期刊导航|湖南大学学报(自然科学版)|面向深度模糊的可部署单目3D目标检测方法

面向深度模糊的可部署单目3D目标检测方法

邓召学 郝丙森 龚胜 刘万里 王景炎

湖南大学学报(自然科学版)2025,Vol.52Issue(10):108-119,12.
湖南大学学报(自然科学版)2025,Vol.52Issue(10):108-119,12.DOI:10.16339/j.cnki.hdxbzkb.2025211

面向深度模糊的可部署单目3D目标检测方法

Deployable Monocular 3D Object Detection Method for Overcoming Depth Ambiguity

邓召学 1郝丙森 2龚胜 2刘万里 3王景炎4

作者信息

  • 1. 重庆交通大学 机电与车辆工程学院,重庆 400074||重庆长安汽车股份有限公司 汽车工程研究总院,重庆 401120
  • 2. 重庆交通大学 机电与车辆工程学院,重庆 400074
  • 3. 招商局检测车辆技术研究院有限公司,重庆 401122
  • 4. 吉林大学 机械与航空航天工程学院,吉林 长春 130025
  • 折叠

摘要

Abstract

Monocular 3D object detection encounters significant challenges due to depth ambiguity.Conventional 2D attention mechanisms have proven insufficient in mitigating this issue,and their high computational overhead further complicates deployment on vehicle-mounted mobile devices.To address these issues,this paper proposes a monocular 3D object detection algorithm based on 3D attention mechanism and multi-object bounding box module.Considering the depth ambiguity in 2D to 3D mapping,the 3D attention mechanism was first incorporated into the network design,which includes a depth information enhancement kernel and a position enhancement kernel with low computational complexity.Then,multi-object bounding box strategies employ pseudo-labels to alleviate the strict constraints of the original hard labels from depth labels perturbations.Hence,the precision of deep estimation is enhanced,improving the model's 3D spatial perception and generalizability for 3D object detection tasks.Experiments on the nuScenes dataset demonstrate that this algorithm outperforms existing monocular 3D object detection methods.Finally,with the aid of TensorRT tools,the model is successfully deployed on mobile devices in the automotive environment.On the Jetson AGX Xavier and Jetson Orin NX(16 GB)embedded platforms,the inference time per frame is 67 ms and 89 ms,respectively,enabling real-time detection of 3D objects.

关键词

注意力机制/模型部署/深度模糊性/目标检测

Key words

attention mechanism/model deployment/deep ambiguity/object detection

分类

计算机与自动化

引用本文复制引用

邓召学,郝丙森,龚胜,刘万里,王景炎..面向深度模糊的可部署单目3D目标检测方法[J].湖南大学学报(自然科学版),2025,52(10):108-119,12.

基金项目

国家自然科学基金资助项目(52072054),National Natural Science Foundation of China(52072054) (52072054)

重庆交通大学研究生科研创新项目(YYK202405),Research and Innovation Program for Graduate Students in Chongqing Jiaotong University(YYK202405) (YYK202405)

湖南大学学报(自然科学版)

OA北大核心

1674-2974

访问量0
|
下载量0
段落导航相关论文