| 注册
首页|期刊导航|红外技术|CSM-YOLO:红外弱小目标检测算法

CSM-YOLO:红外弱小目标检测算法

赵洋 杨聪 陈蓉 范柳 徐森

红外技术2025,Vol.47Issue(10):1234-1245,12.
红外技术2025,Vol.47Issue(10):1234-1245,12.

CSM-YOLO:红外弱小目标检测算法

CSM-YOLO:Infrared Weak Small Target Detection Algorithm

赵洋 1杨聪 2陈蓉 2范柳 2徐森1

作者信息

  • 1. 沈阳化工大学 计算机科学与技术学院,辽宁沈阳 110142||辽宁省化工过程工业智能化技术重点实验室,辽宁沈阳 110142
  • 2. 沈阳化工大学 计算机科学与技术学院,辽宁沈阳 110142
  • 折叠

摘要

Abstract

To address the issues of low detection performance,high missed detection rate,and false alarm rate in an infrared small-target detection caused by the small pixel size of weak targets and complex background interference,this study proposes an improved infrared dim and small target detection algorithm based on YOLOvl2n,named CSM-YOLO.First,a CA-DEConv module was designed to replace the C3k2 module in the backbone network,enhancing the extraction capability of edge and contour information for weak and small targets.Second,the SCSA attention mechanism was introduced to enable the model to focus dynamically on key regions of small target features.Finally,a multiscale feature fusion module was designed to adaptively fuse features across different scales,reducing the loss of small-target information in deeper network layers and improving the overall detection performance.Experimental results on the public datasets SIRST,SIRST V2,and NUDT-SIRST demonstrate that the proposed CSM-YOLO improves mAP50 by 3%,13.3%,and 13.2%,respectively,and mAP50:95 by 0.8%,5.9%,and 15.5%,respectively,compared with the baseline YOLOvl2n model,while also reducing the total number of parameters by 3.5%.

关键词

红外图像/YOLOv12n/目标检测/弱小目标

Key words

infrared images/YOLOv12n/object detection/weak small target

分类

计算机与自动化

引用本文复制引用

赵洋,杨聪,陈蓉,范柳,徐森..CSM-YOLO:红外弱小目标检测算法[J].红外技术,2025,47(10):1234-1245,12.

基金项目

辽宁省教育厅基本科研项目面上项目(LJKMZ20220782). (LJKMZ20220782)

红外技术

OA北大核心

1001-8891

访问量0
|
下载量0
段落导航相关论文