| 注册
首页|期刊导航|家畜生态学报|基于改进YOLO v8的哺乳仔猪保温区温度适宜状态识别研究

基于改进YOLO v8的哺乳仔猪保温区温度适宜状态识别研究

付明明 郑萍 侯郁硕 曹月 李抒憧 黎煊

家畜生态学报2025,Vol.46Issue(10):108-113,6.
家畜生态学报2025,Vol.46Issue(10):108-113,6.DOI:10.3969/j.issn.1673-1182.2025.10.016

基于改进YOLO v8的哺乳仔猪保温区温度适宜状态识别研究

Identifying the Optimal Temperature Status in Heat Preservation Area for Lactating Piglets Based on Improved YOLO v8

付明明 1郑萍 2侯郁硕 3曹月 3李抒憧 3黎煊4

作者信息

  • 1. 黑龙江教师发展学院,哈尔滨 150080
  • 2. 东北农业大学电气与信息学院,哈尔滨 150030||农业农村部生猪养殖设施工程重点实验室,哈尔滨 150030
  • 3. 东北农业大学电气与信息学院,哈尔滨 150030
  • 4. 华中农业大学工学院,武汉 430070||农业农村部智慧养殖技术重点实验室,武汉 430070
  • 折叠

摘要

Abstract

Traditional methods for regulating the appropriate temperature during piglets' growth by monitoring the temperature in heating zones often face challenges,such as determining the optimal placement of temperature sen-sors and the issue of heating when no piglets are present.These methods fail to meet the growth temperature needs of piglets and result in unnecessary energy consumption.This study addresses these issues by defining five typical aggre-gation and dispersion states of suckling piglet groups in the heating zone,based on variations in environmental temper-ature.The study employs an improved YOLO v8 detection algorithm,utilizing optimized VanillaNet architecture,the Sim AM attention mechanism,and the Lion optimizer.The goal is to use machine vision to assess the optimal temper-ature conditions in the piglet heating zone and enable intelligent regulation of the heating system.The results show that the improved YOLO v8 maintains high accuracy,with a memory usage of 0.7MB and a recognition time of 1.495 ms/f,outperforming both YOLO v5 and the original YOLO v8 in terms of model size and recognition time.In com-plex farm environments,the average state recognition rate exceeds 97%,demonstrating high detection confidence.This research provides a critical basis for adjusting heating devices in piglet thermal systems which offer an optimal thermal environment for the piglets while effectively reducing energy consumption.

关键词

哺乳仔猪/适宜生长环境温度/图像识别/聚散状态/改进YOLO v8

Key words

lactating piglets/appropriate growth environment temperature/image recognition/the sta-tus of aggregation and dispersion/improved YOLO v8

分类

农业科技

引用本文复制引用

付明明,郑萍,侯郁硕,曹月,李抒憧,黎煊..基于改进YOLO v8的哺乳仔猪保温区温度适宜状态识别研究[J].家畜生态学报,2025,46(10):108-113,6.

基金项目

农业农村部智慧养殖技术重点实验室开放课题(KLSFTAA-KF001,KLSFTAA-KF002) (KLSFTAA-KF001,KLSFTAA-KF002)

黑龙江省自然科学基金(LH2023C017) (LH2023C017)

黑龙江省教育厅新一轮黑龙江省"双一流"学科协同创新成果项目(LJGXCG2023-062,LJGXCG2024-F14) (LJGXCG2023-062,LJGXCG2024-F14)

家畜生态学报

OA北大核心

1673-1182

访问量0
|
下载量0
段落导航相关论文