| 注册
首页|期刊导航|计算机工程|HDMapFusion:用于自动驾驶的多模态融合高清地图生成(特邀)

HDMapFusion:用于自动驾驶的多模态融合高清地图生成(特邀)

刘洋宏 付杨悠然 董性平

计算机工程2025,Vol.51Issue(10):18-26,9.
计算机工程2025,Vol.51Issue(10):18-26,9.DOI:10.19678/j.issn.1000-3428.0070569

HDMapFusion:用于自动驾驶的多模态融合高清地图生成(特邀)

HDMapFusion:High-Definition Map Generation with Multi-Modality Fusion for Autonomous Driving(Invited)

刘洋宏 1付杨悠然 1董性平1

作者信息

  • 1. 武汉大学计算机学院,湖北武汉 430072||国家多媒体软件工程技术研究中心,湖北武汉 430072||多媒体网络通信工程湖北省重点实验室,湖北武汉 430072||武汉大学人工智能学院,湖北武汉 430072
  • 折叠

摘要

Abstract

The generation of High-Definition(HD)environmental semantic maps is indispensable for environmental perception and decision making in autonomous driving systems.To address the modality discrepancy between cameras and LiDARs in perception tasks,this paper proposes an innovative multimodal fusion framework,HDMapFusion,which significantly improves semantic map generation accuracy via feature-level fusion.Unlike traditional methods that directly fuse raw sensor data,our approach innovatively transforms both camera images and LiDAR point cloud features into a unified Bird's-Eye-View(BEV)representation,enabling physically interpretable fusion of multimodal information within a consistent geometric coordinate system.Specifically,this method first extracts visual features from camera images and 3D structural features from LiDAR point clouds using deep learning networks.Subsequently,a differentiable perspective transformation module converts the front-view image features into a BEV space and the LiDAR point clouds are projected into the same BEV space through voxelization.Building on this,an attention-based feature fusion module is designed to adaptively integrate the two modalities using weighted aggregation.Finally,a semantic decoder generates high-precision semantic maps containing lane lines,pedestrian crossings,road boundary lines,and other key elements.Systematic experiments conducted on the nuScenes benchmark dataset demonstrate that HDMapFusion significantly outperforms existing baseline methods in terms of HD map generation accuracy.These results validate the effectiveness and superiority of the proposed method,offering a novel solution to multimodal fusion in autonomous driving perception.

关键词

高清地图生成/多模态融合/鸟瞰视图表示/自动驾驶/深度估计

Key words

high-definition map generation/multi-modality fusion/Bird's-Eye-View(BEV)representation/autonomous driving/depth estimation

分类

计算机与自动化

引用本文复制引用

刘洋宏,付杨悠然,董性平..HDMapFusion:用于自动驾驶的多模态融合高清地图生成(特邀)[J].计算机工程,2025,51(10):18-26,9.

基金项目

国家自然科学基金(62471342) (62471342)

中央高校基本科研业务费专项资金(2042024kf0036) (2042024kf0036)

澳门科学技术发展基金(001/2024/SKL) (001/2024/SKL)

智慧城市物联网国家重点实验室(澳门大学)开放课题(SKL-IoTSC(UM)-2024-2026/ORP/GA04/2023). (澳门大学)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文