| 注册
首页|期刊导航|计算机工程与应用|LFDS-YOLO:多尺度特征融合的轻量化航拍路面病害检测算法

LFDS-YOLO:多尺度特征融合的轻量化航拍路面病害检测算法

李勇 沈坚

计算机工程与应用2025,Vol.61Issue(21):81-93,13.
计算机工程与应用2025,Vol.61Issue(21):81-93,13.DOI:10.3778/j.issn.1002-8331.2503-0397

LFDS-YOLO:多尺度特征融合的轻量化航拍路面病害检测算法

LFDS-YOLO:Lightweight Aerial Pavement Damage Detection Algorithm with Multi-Scale Fea-ture Fusion

李勇 1沈坚1

作者信息

  • 1. 重庆邮电大学 工业互联网学院,重庆 400065
  • 折叠

摘要

Abstract

Current aerial pavement distress detection algorithms suffer from redundant feature extraction,high computa-tional complexity,inefficient global attention mechanisms,and limited multi-dimensional feature extraction in convolu-tional attention,leading to constrained detection accuracy and real-time performance.To address these issues,this paper proposes LFDS-YOLO,a lightweight detection network based on multi-scale feature fusion and enhanced attention mech-anisms.This paper reconstructs a feature pyramid structure(LF_PANet)by removing large-scale feature branches,designs a dynamic feature extraction block(DFEB)for adaptive resource allocation.A multi-head column attention mech-anism(MHCol-Attn)is introduced,accelerated by FlashAttention to optimize training efficiency.A superior lightweight coordinate attention(SLCA)is proposed to enhance multi-dimensional feature extraction.Unstructured pruning is employed to compress model size and boost inference speed.Experimental results on the UAV-PDD2023 dataset demon-strate that LFDS-YOLO achieves a 3.5 percentage points higher mAP than YOLOv11s,while reducing parameters,com-putational complexity,and model size by 53.2%,6.5%,and 52.2%,respectively,with a detection speed of 95 FPS,vali-dating its effectiveness in aerial pavement distress detection.

关键词

路面病害检测/YOLOv11s/特征融合/注意力机制/轻量化

Key words

pavement defect detection/YOLOv11s/feature fusion/attention mechanism/lightweight

分类

计算机与自动化

引用本文复制引用

李勇,沈坚..LFDS-YOLO:多尺度特征融合的轻量化航拍路面病害检测算法[J].计算机工程与应用,2025,61(21):81-93,13.

基金项目

重庆市技术创新与应用发展专项重点项目(CSTB2024TIAD-KPX0027) (CSTB2024TIAD-KPX0027)

重庆市建设科技计划项目(城科字2018(1-1-7)). (城科字2018(1-1-7)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文