| 注册
首页|期刊导航|计算机科学与探索|胎儿脑核磁共振图像处理技术进展

胎儿脑核磁共振图像处理技术进展

刘梦宇 罗琴 姚雄 王健华 陈健

计算机科学与探索2025,Vol.19Issue(11):2895-2912,18.
计算机科学与探索2025,Vol.19Issue(11):2895-2912,18.DOI:10.3778/j.issn.1673-9418.2501023

胎儿脑核磁共振图像处理技术进展

Progress in Fetal Brain Magnetic Resonance Image Processing Technologies

刘梦宇 1罗琴 1姚雄 1王健华 1陈健1

作者信息

  • 1. 福建理工大学 电子电气与物理学院,福州 350118
  • 折叠

摘要

Abstract

Fetal brain MRI,due to its non-invasiveness,absence of radiation,and high soft-tissue contrast,has become an important tool for assessing fetal brain development and diagnosing congenital brain abnormalities.High-quality fetal brain MR images play an important role in clinical diagnosis,treatment,and scientific research of fetal brain develop-ment.Image processing techniques can enhance the quality of fetal brain MR images,meeting the requirements for diag-nosis and research.Thus,the studies in this field hold significant importance.This paper provides a brief introduction to fetal brain structure and its MR image datasets,and elaborates on six techniques,including image quality assessment,image registration,image denoising,image bias field correction,image artifact correction,and super-resolution reconstruction.Firstly,the importance of image processing technologies for fetal brain MR images is presented.Subsequently,the structure of the fetal brain and its MR image datasets are introduced.Then the six image processing techniques are introduced respectively.The research status both at home and abroad is systematically described.The performance of different methods is compared and analyzed.And the current achievements and challenges are summarized respectively.Finally,the existing issues and future research directions in the field of fetal brain MR image processing are discussed from the perspectives of technology and clinical application.

关键词

胎儿脑/核磁共振图像/图像处理/深度学习

Key words

fetal brain/magnetic resonance image/image processing/deep learning

分类

计算机与自动化

引用本文复制引用

刘梦宇,罗琴,姚雄,王健华,陈健..胎儿脑核磁共振图像处理技术进展[J].计算机科学与探索,2025,19(11):2895-2912,18.

基金项目

福建省自然科学基金(2022J01952,2023J01953) (2022J01952,2023J01953)

2024年教育部产学合作协同育人项目(XY202401007). This work was supported by the Natural Science Foundation of Fujian Province(2022J01952,2023J01953),and the Industry-University Collaborative Education Program of Ministry of Education of China in 2024(XY202401007). (XY202401007)

计算机科学与探索

OA北大核心

1673-9418

访问量0
|
下载量0
段落导航相关论文