| 注册
首页|期刊导航|计算机与现代化|基于深度学习的厂区人员异常行为识别轻量化模型

基于深度学习的厂区人员异常行为识别轻量化模型

刘龙恩 石东祥 单宝明 张方坤 徐啟蕾

计算机与现代化Issue(10):1-6,6.
计算机与现代化Issue(10):1-6,6.DOI:10.3969/j.issn.1006-2475.2025.10.001

基于深度学习的厂区人员异常行为识别轻量化模型

Lightweight Model for Recognizing Abnormal Behavior in Factory Personnel Based on Deep Learning

刘龙恩 1石东祥 2单宝明 1张方坤 1徐啟蕾1

作者信息

  • 1. 青岛科技大学自动化与电子工程学院,山东 青岛 266061
  • 2. 山东新华制药股份有限公司,山东 淄博 255000
  • 折叠

摘要

Abstract

This paper proposes an improved lightweight network for recognizing abnormal behavior among factory personnel based on YOLOv5,to addressing challenges such as complex backgrounds and limited computational resources.This network in-tegrates Omni-dimensional Dynamic Convolution(ODConv)and the Explicit Visual Center Block(EVCBlock),resulting in im-proved detection performance while reducing parameter computation.The ODConv module is introduced in the neck network to enhance the model's adaptability to complex factory environments and decrease the number of model parameters,while the EVC-Block module is added at the end of the backbone network to improve the detection accuracy of the model and compensate for ac-curacy loss of model caused by the reduction of parameters.The Normalized Wasserstein Distance(NWD)loss is constructed to optimize the model training process and enhance the model's detection performance on small targets.Several enhanced detection models are constructed based on existing lightweight methods to compare detection accuracy and parameter count.Results demon-strate that the proposed lightweight recognition model has fewer parameters while maintaining high detection accuracy compared with the existing methods.Compared with the original model,the mAP of the detection model built in this paper increases by 3.2 percentage points and GFLOPs decreases by 2.2.This work is of guiding significance to realize rapid detection and accurate iden-tification of factory personnel's abnormal behavior in industrial production scenarios.

关键词

轻量级识别模型/异常行为识别/YOLOv5/全维动态卷积/显式视觉中心

Key words

lightweight model/abnormal behavior detection/YOLOv5/omni-dimensional dynamic convolution/explicit visual center

分类

计算机与自动化

引用本文复制引用

刘龙恩,石东祥,单宝明,张方坤,徐啟蕾..基于深度学习的厂区人员异常行为识别轻量化模型[J].计算机与现代化,2025,(10):1-6,6.

基金项目

国家自然科学基金资助项目(62103216) (62103216)

计算机与现代化

1006-2475

访问量0
|
下载量0
段落导航相关论文