| 注册
首页|期刊导航|计算机与现代化|基于改进的DeepLabv3+模型的自然环境下舌象分割方法

基于改进的DeepLabv3+模型的自然环境下舌象分割方法

刘嵘澂 辛国江 张杨 朱磊

计算机与现代化Issue(10):32-36,43,6.
计算机与现代化Issue(10):32-36,43,6.DOI:10.3969/j.issn.1006-2475.2025.10.006

基于改进的DeepLabv3+模型的自然环境下舌象分割方法

Natural Environment Tongue Image Segmentation Method Based on Improved Labv3+Model

刘嵘澂 1辛国江 1张杨 1朱磊2

作者信息

  • 1. 湖南中医药大学信息与工程学院,湖南 长沙 410208
  • 2. 泰芯半导体有限公司长沙分公司,湖南 长沙 410024
  • 折叠

摘要

Abstract

Tongue image segmentation in natural environments poses great challenges due to factors such as lighting and back-ground interference.This paper proposes a DeepLabv3-MAC model based on improved DeepLabv3+algorithm for segmenting tongue images captured in natural settings.Firstly,the backbone network of the DeepLabv3+model is replaced with a Mobile-Netv2 network to reduce model complexity.Secondly,an asymmetric convolutional module is adopted to enhance the convolu-tional kernel skeleton of convolutional neural network,thereby improving the utilization of convolutional information.Lastly,the introduction of the CBAM attention mechanism not only focuses on the importance of parameters in space and channels,but also enhances the segmentation accuracy of the model.Experimental results demonstrate that,compared to classical tongue image seg-mentation algorithms,the proposed DeepLabv3-MAC model exhibits superior segmentation performance.Additionally,the model significantly reduces the number of parameters,enabling faster segmentation of tongue images in natural environments and facili-tating future deployment on mobile devices.

关键词

舌象分割/DeepLabv3+/DeepLabv3-MAC/非对称卷积模块/CBAM注意力机制

Key words

tongue image segmentation/DeepLabv3+/DeepLabv3-MAC/asymmetric convolution module/CBAM attention mechanism

分类

计算机与自动化

引用本文复制引用

刘嵘澂,辛国江,张杨,朱磊..基于改进的DeepLabv3+模型的自然环境下舌象分割方法[J].计算机与现代化,2025,(10):32-36,43,6.

基金项目

国家级大学生创新训练项目(2022批次) (2022批次)

湖南省一流本科课程(2021-896) (2021-896)

湖南省教改课题(HNJG-2021-0584) (HNJG-2021-0584)

计算机与现代化

1006-2475

访问量1
|
下载量0
段落导航相关论文