基于THBA-BiLSTM循环流化床锅炉含氧量预测OA
Oxygen Content Prediction of Circulating Fluidized Bed Boiler Based on THBA-BiLSTM
氧气含量是反映循环流化床锅炉内部燃烧的重要参数,针对氧气含量难以预测的问题,本文提出一种改进双向长短期记忆网络的软测量模型.首先,通过输入输出相关系数法确定与氧气含量相关的给煤量、进风量等输入变量的参数;其次,基于双向长短期记忆网络建立输出氧气含量软测量模型,BiLSTM预测模型能够学习过去和未来的信息,能够更好地捕捉到全局的依赖信息;然后,引入Tent混沌序列、柯西变异策略来优化蜜獾算法的初始种群、局部寻优和全局寻优能力;将改进后的蜜獾优化算法应用于BiLSTM预测模型参数寻优,进而优化BiLSTM模型超参数,保证了测量模型的精确度.最后,将提出的模型应用于循环流化床锅炉实际输出预测,以MAE、MSE、MAPE、RMSE为评价指标.实验结果表明,本文所提的THBA-BiLSTM神经网络的误差精度分别为1.57e-2、3.5e-4、4.1e-3、1.87e-2,相对其他4种模型有了显著的提升效果.
Oxygen content is an important parameter reflecting the internal combustion of circulating fluidized bed boiler,for the problem that oxygen content is difficult to predict,a soft measurement model is proposed to improve the bidirectional long and short-term memory network.Firstly,the parameters of input variables such as coal feed,air intake and other input variables re-lated to oxygen content are determined by the input-output correlation coefficient method.Secondly,the output oxygen content soft measurement model is established based on the bidirectional long and short-term memory network,and the BiLSTM predic-tion model is able to learn the past and the future information,which can better capture the global dependency information.Then,Tent chaotic sequences and Cauchy's mutation strategy are introduced to optimize the honey-badger algorithm's initial population,local optimization and global optimization abilities;the improved honey badger optimization algorithm is applied to BiLSTM prediction model parameter optimization,which in turn optimizes the hyperparameters of the BiLSTM model and en-sures the accuracy of the measurement model.Finally,the proposed model is applied to the actual output prediction of circulating fluidized bed boiler,and MAE,MSE,MAPE,and RMSE are used as the evaluation indexes,and the experimental results show that the error accuracies of the THBA-BiLSTM neural network proposed in this paper are 1.57e-2,3.5e-4,4.1e-3,and 1.87e-2,which are significant enhancement effects relative to the other four models.
王智聪;马祎航;张凌祥
中铁十九局集团矿业投资有限公司,北京 100161沈阳工学院,辽宁 抚顺 113122威立雅环境服务有限公司,北京 100073
计算机与自动化
循环流化床锅炉蜜獾优化算法双向长短期记忆网络神经网络含氧量预测
circulating fluidized bed boilershoney badger optimization algorithmbidirectional long and short-term memory networkneural networkflue gas oxygen content prediction
《计算机与现代化》 2025 (10)
73-79,7
辽宁省自然科学基金联合基金资助项目(2023-MSLH-207)
评论