基于改进TimesNet模型的农产品价格预测方法OA
Method for Predicting Agricultural Product Prices Based on Improved TimesNet
农产品价格预测对农业市场的稳定起着关键作用.然而,由于农产品价格受多种因素影响,表现出非线性、周期性等特征,使得农产品价格难以准确预测.为了解决这个问题,本文提出一种新的农产品价格预测模型EMD-ConvNeXtV2-TimesNet.该模型在TimesNet模型的基础上进行了2项创新:首先创新性地引入了经验模态分解(EMD)模块,用于分解原始价格序列,从而更好地捕捉价格序列的内在结构信息;其次将TimesNet的图像特征提取模块改进为ConvNeXtV2 Block,以更有效地捕捉价格的周期信息.在收集的玉米、鸡蛋、大豆、花生数据集上进行了对比实验,实验结果显示,相比于DLinear、Informer、Transformer、FiLM、FEDformer这些对比模型中的最佳预测效果,平均绝对百分比误差(MAPE)和平均绝对误差(MAE)分别降低了38.902%/38.562%、33.183%/33.108%、39.471%/35.178%、48.525%/47.806%.新模型取得了显著的精度提升.消融实验进一步验证了EMD模块和ConvNeXtV2 Block在模型中的互补作用,相比于原始的TimesNet更有效地降低了价格预测误差.
Predicting agricultural product prices plays a key role in stabilizing the agricultural market.However,due to the influ-ence of various factors,agricultural product prices exhibit characteristics such as non-linearity and periodicity,making it diffi-cult to accurately predict.To solve this problem,a new agricultural product price prediction model,EMD-ConvNeXtV2-Ti-mesNet,is proposed.The model introduces two innovations based on the TimesNet model:first,it innovatively incorporates an Empirical Mode Decomposition(EMD)module to decompose the original price series,thereby better capturing the intrinsic structural information of the price series;second,it improves the image feature extraction module of TimesNet to a ConvNeXtV2 Block to more effectively capture the cyclical information of prices.Comparative experiments were conducted on the collected da-tasets of corn,eggs,soybeans,and peanuts.The experimental results show that compared with the best prediction results of com-parison models such as DLinear,Informer,Transformer,FiLM,FEDformer,the Mean Absolute Percentage Error(MAPE)and Mean Absolute Error(MAE)are reduced by 38.902%/38.562%,33.183%/33.108%,39.471%/35.178%,and 48.525%/47.806%respectively.The new model has achieved significant accuracy improvements.Ablation experiments further confirmed the complementary role of the EMD module and ConvNeXtV2 Block in the model,which more effectively reduces the price pre-diction error compared to the original TimesNet.
王饮冰;王兴芬;李立博
北京信息科技大学商务智能研究所,北京 100192||北京信息科技大学计算机学院,北京 100192北京信息科技大学商务智能研究所,北京 100192||北京信息科技大学信息管理学院,北京 100192北京信息科技大学商务智能研究所,北京 100192||北京信息科技大学信息管理学院,北京 100192
计算机与自动化
价格预测农产品TimesNetEMDConvNeXtV2
price predictionagricultural productsTimesNetEMDConvNeXtV2
《计算机与现代化》 2025 (10)
89-95,102,8
国家重点研发计划项目(2019YFB1405003)
评论