| 注册
首页|期刊导航|计算机与现代化|面向隐蔽化挖矿行为识别的特征选择方法

面向隐蔽化挖矿行为识别的特征选择方法

何志涌 贺泽宇 张伟 柳国平

计算机与现代化Issue(10):103-109,7.
计算机与现代化Issue(10):103-109,7.DOI:10.3969/j.issn.1006-2475.2025.10.016

面向隐蔽化挖矿行为识别的特征选择方法

Feature Selection Method for Recognizing Covert Mining Behavior

何志涌 1贺泽宇 1张伟 1柳国平2

作者信息

  • 1. 北京信息科技大学计算机学院,北京 102206||北京信息科技大学北京未来区块链与隐私计算高精尖中心,北京 102206
  • 2. 云南省昭通市第一人民医院计算机信息中心,云南 昭通 657000
  • 折叠

摘要

Abstract

As the Chinese government continues to regulate cryptocurrency mining activities,miners are increasingly concealing their operations through encryption,proxies,and other methods.Existing mining behavior monitoring techniques have lower ac-curacy when dealing with covert mining,making effective detection difficult.To address this problem,this paper proposes a co-vert mining behavior identification method based on RF-Voting.First,we collected and compiled a dataset of covert mining traf-fic and defined three types of covert mining behaviors.In the feature selection module for covert mining,the RF(Random For-est)feature selector interacts with the Voting classifier to select features,effectively identifying important ones.In the behavior matching module,we propose an enhanced Voting classifier with performance-aware selection and adaptive weight assignment.Performance-aware selection allows for screening high-performance base classifiers,while adaptive weight assignment dynami-cally adjusts the weights of the classifiers.By combining these two methods,we effectively improve the classification performance and stability of the model.Experimental results show that,compared to traditional mining detection methods,the accuracy of this method was increased by up to 6.18 percentage points,and the F1 score was increased by up to 9.35 percentage points,dem-onstrating that the RF-Voting method provides a more accurate and effective solution for monitoring covert mining behavior.

关键词

隐蔽化挖矿/挖矿行为/挖矿流量/流量分类/机器学习

Key words

convert mining/mining behavior/mining traffic/traffic classification/machine learning

分类

计算机与自动化

引用本文复制引用

何志涌,贺泽宇,张伟,柳国平..面向隐蔽化挖矿行为识别的特征选择方法[J].计算机与现代化,2025,(10):103-109,7.

基金项目

国家重点研发计划项目(2022YFC3320903) (2022YFC3320903)

"北京未来区块链与隐私计算高精尖中心"和"国家经济安全预警工程北京实验室"资助项目 ()

计算机与现代化

1006-2475

访问量0
|
下载量0
段落导航相关论文