| 注册
首页|期刊导航|计算机应用研究|融合实体特征聚合和关系语义聚合的推理模型

融合实体特征聚合和关系语义聚合的推理模型

董文永 梁智学 周孟强 贾亚洁

计算机应用研究2025,Vol.42Issue(10):3005-3011,7.
计算机应用研究2025,Vol.42Issue(10):3005-3011,7.DOI:10.19734/j.issn.1001-3695.2024.11.0537

融合实体特征聚合和关系语义聚合的推理模型

Reasoning model integrating entity feature aggregation and relation semantic aggregation

董文永 1梁智学 2周孟强 2贾亚洁3

作者信息

  • 1. 新疆政法学院信息网络安全学院,新疆图木舒克 843900||武汉大学计算机学院,武汉 430072
  • 2. 武汉大学计算机学院,武汉 430072
  • 3. 武汉大学国家网络安全学院,武汉 430072
  • 折叠

摘要

Abstract

Most existing temporal knowledge graph reasoning models rely on relational graph neural networks to capture se-mantic dependencies between entities in each snapshot.To better utilize structural information within graph data,this paper proposed the EFRSA reasoning model,which integrated entity feature aggregation and relational semantic aggregation.This model effectively captured semantic dependencies among concurrent entities at each timestamp.Through its entity feature ag-gregation module,EFRSA identified and leveraged the potential significant associations among co-occurring entities.Additio-nally,EFRSA introduced a relation semantic aggregation module based on relational subgraph associations to fully express rela-tional semantic information in the graph structure.Experimental results on datasets such as ICEWS14,GDELT,YAGO,and WIKI show that EFRSA achieves an MRR improvement of 0.89~3.24 in entity prediction and outperforms other methods in relation semantic prediction,thereby enhancing the model's reasoning capability.

关键词

时序知识图谱/图结构/实体特征聚合/关系语义聚合

Key words

temporal knowledge graph/graph structure/entity feature aggregation/relation semantic aggregation

分类

计算机与自动化

引用本文复制引用

董文永,梁智学,周孟强,贾亚洁..融合实体特征聚合和关系语义聚合的推理模型[J].计算机应用研究,2025,42(10):3005-3011,7.

基金项目

国家自然基金面上项目(61672024) (61672024)

国家重点专项研发计划资助项目(2018YFB2100500) (2018YFB2100500)

计算机应用研究

OA北大核心

1001-3695

访问量0
|
下载量0
段落导航相关论文