| 注册
首页|期刊导航|计算机应用研究|融合动态传播网络与双重特征差异的社交网络谣言检测模型

融合动态传播网络与双重特征差异的社交网络谣言检测模型

徐桂琼 何思桦 李卫民

计算机应用研究2025,Vol.42Issue(10):3012-3018,7.
计算机应用研究2025,Vol.42Issue(10):3012-3018,7.DOI:10.19734/j.issn.1001-3695.2025.03.0061

融合动态传播网络与双重特征差异的社交网络谣言检测模型

Rumor detection model in social networks integrating dynamic propagation networks and dual feature differences

徐桂琼 1何思桦 1李卫民2

作者信息

  • 1. 上海大学管理学院,上海 200444
  • 2. 上海大学计算机工程与科学学院,上海 200444
  • 折叠

摘要

Abstract

Most of the existing rumor detection models rely heavily on static information,making it difficult to reflect the dyna-mic propagation characteristics of rumors.Moreover,these models often overlook the feature differences and dynamic evolution in dimensions such as emotional polarity and thematic semantics between the original posts and comments.To solve this problem,this paper innovatively proposed an integrating dynamic network and dual feature differences model(DNDF)for rumor detection in social networks.The model aimed to improve detection effectiveness by analyzing the evolution of multidimensional features.Firstly,it used a dual feature difference module to analyze feature variations in emotional polarity and thematic semantics be-tween original posts and comment sequences.Then it combined propagation graph sequences and applied BiLSTM to generate dif-ferential feature sequences.Finally,it introduced a co-attention mechanism to strengthen the interactive learning between text features and emotional difference features,as well as between thematic difference features.Experiments on public datasets PHEME and WEIBO show that the DNDF model increases the accuracy by 0.3%and 2%respectively.The model outperforms mainstream baseline models in multiple indicators,such as F1,and confirms its effectiveness in rumor detection in social networks.

关键词

特征差异/动态传播网络/谣言检测/社交网络

Key words

feature difference/dynamic propagation network/rumor detection/social network

分类

计算机与自动化

引用本文复制引用

徐桂琼,何思桦,李卫民..融合动态传播网络与双重特征差异的社交网络谣言检测模型[J].计算机应用研究,2025,42(10):3012-3018,7.

基金项目

国家社会科学基金资助项目(23BGL270) (23BGL270)

计算机应用研究

OA北大核心

1001-3695

访问量0
|
下载量0
段落导航相关论文