| 注册
首页|期刊导航|计算机应用与软件|基于可变感受野的遥感图像火点目标检测

基于可变感受野的遥感图像火点目标检测

张晏玮 刘文彬 董道航 王子玥 苏晨鹏 安国成

计算机应用与软件2025,Vol.42Issue(10):1-7,35,8.
计算机应用与软件2025,Vol.42Issue(10):1-7,35,8.DOI:10.3969/j.issn.1000-386x.2025.10.001

基于可变感受野的遥感图像火点目标检测

REMOTE SENSING IMAGE FIRE POINT TARGET DETECTION BASED ON VARIABLE RECEPTIVE FIELD

张晏玮 1刘文彬 2董道航 2王子玥 2苏晨鹏 2安国成1

作者信息

  • 1. 中国电子科技集团公司第三十二研究所 上海 201808
  • 2. 上海交通大学 上海 200240
  • 折叠

摘要

Abstract

In response to the challenges in remote sensing fire point detection,such as small target size,high confusion,and complex background,this study proposes an innovative deep learning model named VRFNet,aiming at optimizing the identification of forest fire ignition points.The VRFNet model extracted multi-scale features by integrating wavelet transform and large kernel convolutional decomposition techniques,effectively expanding the model's receptive field and reducing the number of parameters.The model applied average pooling and max pooling to these multi-scale features,combined with an attention mechanism to extract key information,thereby enhancing the expressive power of the features.Through an adaptive receptive field selection mechanism,the model fused features from varying receptive fields through weighted integration,accommodating the scale diversity of fire point targets.The VRFNet achieved accuracies of 86.9%and 73.4%on the DOTA v1.0 and GF-4 datasets,respectively,improving upon the state-of-the-art(SOTA)models by 0.026,thereby confirming its effectiveness in remote sensing image target detection tasks.

关键词

火点检测/卷积分解/注意力机制/可变感受野

Key words

Fire point detection/Convolution decomposition/Attention mechanism/Variable receptive

分类

计算机与自动化

引用本文复制引用

张晏玮,刘文彬,董道航,王子玥,苏晨鹏,安国成..基于可变感受野的遥感图像火点目标检测[J].计算机应用与软件,2025,42(10):1-7,35,8.

基金项目

国家重点研发计划项目(2023YFC3006700). (2023YFC3006700)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文