| 注册
首页|期刊导航|计算机应用与软件|基于深度学习的隧道衬砌病害识别软件的开发与实现

基于深度学习的隧道衬砌病害识别软件的开发与实现

刘金杉 卢昱杰 李元海

计算机应用与软件2025,Vol.42Issue(10):24-29,101,7.
计算机应用与软件2025,Vol.42Issue(10):24-29,101,7.DOI:10.3969/j.issn.1000-386x.2025.10.004

基于深度学习的隧道衬砌病害识别软件的开发与实现

DEVELOPMENT AND IMPLEMENTATION OF IDENTIFICATION SOFTWARE OF TUNNEL LINING DISEASES BASED ON DEEP LEARNING

刘金杉 1卢昱杰 2李元海3

作者信息

  • 1. 同济大学建筑工程系 上海 200092||中国矿业大学深部岩土力学与地下工程国家重点实验室 江苏徐州 221116
  • 2. 同济大学建筑工程系 上海 200092||同济大学工程结构性能演化与控制教育部重点实验室 上海 200092||同济大学上海智能科学与技术研究院 上海 200092
  • 3. 中国矿业大学深部岩土力学与地下工程国家重点实验室 江苏徐州 221116
  • 折叠

摘要

Abstract

In order to solve the problem of rapid and real-time identification of tunnel lining diseases,deep learning method is adopted to compile a set of real-time identification and detection software for diseases,and to realize the alarm and counting functions of the first occurrence of new diseases.For the tunnel lining disease target detection frame instability phenomenon based on deep learning,the normalized product correlation threshold judgment method was introduced,by comparing the similarity of the two adjacent detection frames before and after the frame to discriminate whether it was a new disease.Through the experiment,we find the experimental value of the normalized product correlation threshold that can meet both the sensitivity and correctness of the new disease alarm,and the analysis of the possible influencing factors are discussed.An application example of the experimental conditions of this software is given.

关键词

隧道工程/衬砌病害/识别与检测/深度学习/计算机视觉

Key words

Tunnel engineering/Disease of tunnel lining/Identification and detection/Deep learning/Computer vision

分类

信息技术与安全科学

引用本文复制引用

刘金杉,卢昱杰,李元海..基于深度学习的隧道衬砌病害识别软件的开发与实现[J].计算机应用与软件,2025,42(10):24-29,101,7.

基金项目

国家自然科学基金面上项目(52078374) (52078374)

上海市经信委专项资金项目(沪J-2018-27) (沪J-2018-27)

国家重点基础研究发展计划(973)项目(2014CB046905). (973)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文