| 注册
首页|期刊导航|计算机应用与软件|超密集网络环境中移动边缘计算任务卸载的深度强化学习算法

超密集网络环境中移动边缘计算任务卸载的深度强化学习算法

张茜 戚续博 张聪 崔勇 王洪格

计算机应用与软件2025,Vol.42Issue(10):306-312,7.
计算机应用与软件2025,Vol.42Issue(10):306-312,7.DOI:10.3969/j.issn.1000-386x.2025.10.041

超密集网络环境中移动边缘计算任务卸载的深度强化学习算法

MOBILE EDGE COMPUTING TASK OFFLOADING ALGORITHM BASED ON DEEP REINFORCEMENT LEARNING IN ULTRA-DENSE NETWORK ENVIRONMENT

张茜 1戚续博 1张聪 2崔勇 3王洪格1

作者信息

  • 1. 中原工学院计算机学院 河南郑州 450007
  • 2. 中国科学技术大学计算机科学与技术学院 安徽 合肥 230026
  • 3. 郑州轻工业大学计算机与通信工程学院 河南郑州 450002
  • 折叠

摘要

Abstract

To solve the problem of too static scenarios caused by ignoring the time-varying characteristics of communication networks and user mobility in the research of mobile edge computing task offloading,this paper considers an edge computing task offloading scenario in an ultra dense network environment with multiple base stations,which provides mobile users with real-time task offloading decisions without any prior information.Combined with the strong environment interaction ability of reinforcement learning,the problem was described as a Markov decision process,and the state and action spaces were redefined.A binary online task offloading algorithm based on priority sampling in dual deep Q network was proposed,and the CPU frequency of the device was optimized.The effectiveness of the proposed algorithm was verified by simulation experiments.

关键词

任务卸载/边缘计算/深度强化学习/超密集网络/马尔可夫决策

Key words

Task offload/Edge computing/Deep reinforcement learning/Ultra-dense network/Markov decision

分类

计算机与自动化

引用本文复制引用

张茜,戚续博,张聪,崔勇,王洪格..超密集网络环境中移动边缘计算任务卸载的深度强化学习算法[J].计算机应用与软件,2025,42(10):306-312,7.

基金项目

国家自然科学基金项目(61902369) (61902369)

河南省科技攻关计划项目(222102210281,212102210409) (222102210281,212102210409)

中原工学院优势学科实力提升计划项目. ()

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文