| 注册
首页|期刊导航|机械科学与技术|MMI-SSVP的机床轴承故障特征提取应用研究

MMI-SSVP的机床轴承故障特征提取应用研究

康怡 刘韬 施庆华 王振亚

机械科学与技术2025,Vol.44Issue(10):1774-1784,11.
机械科学与技术2025,Vol.44Issue(10):1774-1784,11.DOI:10.13433/j.cnki.1003-8728.20230344

MMI-SSVP的机床轴承故障特征提取应用研究

Applying MMI-SSVP Method to Machine Tool Bearing Fault Feature Extraction

康怡 1刘韬 1施庆华 2王振亚1

作者信息

  • 1. 昆明理工大学 机电工程学院,昆明 650500||云南省先进装备智能制造技术重点实验室,昆明 650500
  • 2. 中国机械总院集团云南分院有限公司,昆明 650031
  • 折叠

摘要

Abstract

The reconstruction based on the singular value decomposition can effectively separate and suppress random noise components in monitoring signals,but its performance is limited by the construction of trajectory matrixes and effective component evaluation and selection.To solve this problem,an adaptive sum singular value pair(SSVP)optimization framework based on the min mutual information(MMI)is proposed and applied to the feature extraction of machine tool bearing fault signals.Firstly,singular value and singular value vector are calculated with the anti-angular average method,and singular value pairs(SVP)are obtained with the characterization ability of the SVP of sub-signal energy.Then,the optimal reconstructed components are obtained adaptively based on the MMI index,avoiding over-noise reduction or under-noise reduction.Meanwhile,the singular value ratio indexes of MMI are combined to determine the number of optimal decomposition dimensions of the Hankel matrix.Finally,the validity of the MMI-SSVP method is verified with the data of the faulty bearings of a spindle and the feeding system of a machining center in an industrial site respectively.

关键词

奇异值分解/累加奇异值子对/最小互信息/奇异值比/特征提取

Key words

singular value decomposition/sum singular value pair/min mutual information/singular value ratio/feature extraction

分类

机械工程

引用本文复制引用

康怡,刘韬,施庆华,王振亚..MMI-SSVP的机床轴承故障特征提取应用研究[J].机械科学与技术,2025,44(10):1774-1784,11.

基金项目

国家自然科学基金项目(52065030)与云南省科技厅重大专项(202202AC080008) (52065030)

机械科学与技术

OA北大核心

1003-8728

访问量0
|
下载量0
段落导航相关论文