| 注册
首页|期刊导航|机械与电子|基于深度学习的海浪参数观测方法

基于深度学习的海浪参数观测方法

张会珍 徐相龙 王立杰 高嘉伟 侯男

机械与电子2025,Vol.43Issue(10):3-10,8.
机械与电子2025,Vol.43Issue(10):3-10,8.

基于深度学习的海浪参数观测方法

A Deep Learning-based Framework for Ocean Wave Parameter Estimation

张会珍 1徐相龙 1王立杰 1高嘉伟 1侯男1

作者信息

  • 1. 东北石油大学电气信息工程学院,黑龙江 大庆 163000
  • 折叠

摘要

Abstract

To address the limitations of traditional wave observation methods in complex backgrounds,such as poor robustness and low computational efficiency,this study proposes an improved deep learning-based wave observation algorithm.The method directly estimates disparity maps from stereo wave images,significantly enhancing processing efficiency.The proposed network architecture consists of three main modules:feature extraction,3D convolution,and disparity regression.In the feature extraction stage,an At-rous Spatial Pyramid Pooling(ASPP)module is introduced to capture multi-scale spatial features.An at-tention mechanism is further integrated to optimize feature fusion,enabling the construction of a multi-branch cost volume.A stacked encoder-decoder structure based on 3D convolution is employed to regular-ize the cost volume and extract reliable point correspondences.Experimental results on the Acqua Alta dataset demonstrate that,compared with traditional approaches,the proposed method achieves comparable reconstruction accuracy while improving computational efficiency by approximately 75%.These results highlight the method's potential for high-efficiency and high-precision wave observation,with significant theoretical and engineering implications.

关键词

深度学习/视差估计/海浪观测/三维点云

Key words

deep learning/disparity estimation/ocean wave observation/3D point cloud

分类

计算机与自动化

引用本文复制引用

张会珍,徐相龙,王立杰,高嘉伟,侯男..基于深度学习的海浪参数观测方法[J].机械与电子,2025,43(10):3-10,8.

基金项目

国家自然科学基金资助项目(2021JJLH0025) (2021JJLH0025)

机械与电子

1001-2257

访问量0
|
下载量0
段落导航相关论文