| 注册
首页|期刊导航|空间科学学报|基于极限学习机的地磁模型误差预测方法

基于极限学习机的地磁模型误差预测方法

郭红阳 张涛 韩鹏 陈晨 赵治华

空间科学学报2025,Vol.45Issue(5):1211-1219,9.
空间科学学报2025,Vol.45Issue(5):1211-1219,9.DOI:10.11728/cjss2025.05.2024-0109

基于极限学习机的地磁模型误差预测方法

Error Prediction Method of Geomagnetic Model Based on Extreme Learning Machine

郭红阳 1张涛 1韩鹏 2陈晨 1赵治华1

作者信息

  • 1. 河南工业大学机电工程学院 郑州 450001
  • 2. 中国科学院国家空间科学中心 北京 100190
  • 折叠

摘要

Abstract

The high-precision geomagnetic field model is an important foundation for autonomous na-vigation of near earth satellites,but the improvement of navigation accuracy is constrained by observa-tion errors,spherical harmonic truncation errors,and slow updates of the geomagnetic model.To solve this problem,this paper proposes a geomagnetic model error prediction method based on regularized ex-treme learning machine.The optimal estimation of the regularization coefficient C is achieved by using a subtraction mean algorithm,which reduces subjectivity and randomness in parameter tuning,improves learning efficiency and prediction accuracy.In addition,this method can effectively improve the error es-timation accuracy when outliers exist in geomagnetic observation sequences.Then,a geomagnetic navi-gation method with model error compensation was proposed by integrating it with filtering algorithms,and simulation verification was conducted using real geomagnetic measurement data from in orbit satel-lites.The results show that the prediction accuracy of the method proposed in this paper is superior to several commonly used neural network prediction methods,and the navigation accuracy reaches 1.26 km,indicating that the proposed error prediction model can effectively improve the performance of geomag-netic navigation.

关键词

极限学习机/正则化/减法均值器/地磁滤波

Key words

Extreme learning machine/Regularization/Subtraction mean algorithm/Geomagnetic filter

分类

地球科学

引用本文复制引用

郭红阳,张涛,韩鹏,陈晨,赵治华..基于极限学习机的地磁模型误差预测方法[J].空间科学学报,2025,45(5):1211-1219,9.

基金项目

河南省科技厅自然科学项目资助(242102221043) (242102221043)

空间科学学报

OA北大核心

0254-6124

访问量0
|
下载量0
段落导航相关论文