| 注册
首页|期刊导航|矿业科学学报|基于频谱声学方法的深部掘进工作面瓦斯浓度预测研究

基于频谱声学方法的深部掘进工作面瓦斯浓度预测研究

张建国 王文唱 魏风清 冯志成 闵瑞

矿业科学学报2025,Vol.10Issue(5):821-833,13.
矿业科学学报2025,Vol.10Issue(5):821-833,13.DOI:10.19606/j.cnki.jmst.2025075

基于频谱声学方法的深部掘进工作面瓦斯浓度预测研究

Prediction of gas concentration in deep heading face based on the frequency spectrum acoustic method

张建国 1王文唱 2魏风清 2冯志成 2闵瑞2

作者信息

  • 1. 河南理工大学安全科学与工程学院,河南焦作 454000||炼焦煤资源绿色开发全国重点实验室,河南平顶山 467000||中国平煤神马控股集团有限公司,河南平顶山 467000
  • 2. 河南理工大学安全科学与工程学院,河南焦作 454000
  • 折叠

摘要

Abstract

Accurate gas concentration prediction is crucial for preventing dynamic disasters in deep coal mines.To address the limitations of current prediction methods that rely heavily on historical data and dynamic-static parameters,the frequency spectrum acoustic method employed in Russian coal mines was introduced.Indicators closely related to gas concentration were screened from artificial acoustic sig-nal indicators of the frequency spectrum acoustic method using Grey Relational Analysis(GRA)and Hierarchical Cluster Analysis(HCA).The iterative annealing strategy of the Simulated Annealing Al-gorithm(SAA)was applied to determine the number of modal components(K)and the penalty coeffi-cient(α)in Variational Mode Decomposition(VMD).The optimized VMD was then used to decom-pose noisy gas concentration signals into several relatively stable intrinsic mode functions with different frequencies.The optimal smoothing factor(σ)of the Generalized Regression Neural Network(GRNN)was identified through the stochastic perturbation strategy of SAA.The refined GRNN model was uti-lized to effectively predict each modal component and reconstruct the prediction results.The findings demonstrate that the"decomposition-prediction-reconstruction"mechanism effectively suppresses noise interference and significantly reduces nonlinear complexity,thereby enhancing prediction accuracy.Compared with four alternative models,the VMD-SAA-GRNN model based on the frequency spectrum acoustic method exhibits superior generalization capability and higher precision in dynamic gas concen-tration prediction,providing a valuable reference for gas control in deep tunneling faces.

关键词

瓦斯浓度预测/频谱声学方法/变分模态分解/模拟退火算法/广义回归神经网络

Key words

gas concentration prediction/the frequency spectrum acoustic method/variational mode decomposition/simulated annealing algorithm/generalized regression neural network

分类

矿山工程

引用本文复制引用

张建国,王文唱,魏风清,冯志成,闵瑞..基于频谱声学方法的深部掘进工作面瓦斯浓度预测研究[J].矿业科学学报,2025,10(5):821-833,13.

基金项目

国家自然科学基金联合基金(U23A20600) (U23A20600)

河南省科技攻关(252102320335) (252102320335)

矿业科学学报

OA北大核心

2096-2193

访问量1
|
下载量0
段落导航相关论文