| 注册
首页|期刊导航|控制理论与应用|用于模型结构和参数联合辨识的共轭梯度追踪辨识方法

用于模型结构和参数联合辨识的共轭梯度追踪辨识方法

刘艳君 刘维维 陈晶 丁锋

控制理论与应用2025,Vol.42Issue(10):1981-1989,9.
控制理论与应用2025,Vol.42Issue(10):1981-1989,9.DOI:10.7641/CTA.2024.30616

用于模型结构和参数联合辨识的共轭梯度追踪辨识方法

Conjugate gradient pursuit identification algorithm for combined model structure and parameter identification

刘艳君 1刘维维 2陈晶 3丁锋1

作者信息

  • 1. 江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122||江南大学物联网工程学院,江苏无锡 214122
  • 2. 江南大学物联网工程学院,江苏无锡 214122
  • 3. 江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122
  • 折叠

摘要

Abstract

It is a significant challenge to simultaneously identify the model structure and parameters with limited sam-pling data.By combining the conjugate gradient optimization algorithm and a greedy algorithm,a conjugate gradient pursuit based sparse identification method is proposed.Firstly,the system model is transformed into a sparse parameter identification model.Then,the greedy search and conjugate gradient optimization are used to select and estimate the posi-tions and values of non-zero parameters,system orders and delays are then obtained based on the sparse parameter structure.Simulation examples show that this method can utilize limited sampling data to simultaneously identify the structure and parameters of the system,with the advantages of fast iteration speed and low computational complexity.Compared with existing greedy identification methods,it has lower computational complexity than the orthogonal matching pursuit based method and fewer iterations than the gradient pursuit based method,while achieving a higher model accuracy than the gradient pursuit based method.

关键词

参数辨识/结构辨识/共轭梯度/共轭梯度追踪

Key words

parameter identification/structure identification/conjugate gradient/conjugate gradient pursuit

引用本文复制引用

刘艳君,刘维维,陈晶,丁锋..用于模型结构和参数联合辨识的共轭梯度追踪辨识方法[J].控制理论与应用,2025,42(10):1981-1989,9.

基金项目

国家自然科学基金项目(62373165),江苏省自然科学基金项目(BK20201339),中国博士后科学基金项目(2022M711361)资助.Supported by the National Natural Science Foundation of China(62373165),the Natural Science Foundation of Jiangsu Province(BK20201339)and the China Postdoctoral Science Foundation(2022M711361). (62373165)

控制理论与应用

OA北大核心

1000-8152

访问量0
|
下载量0
段落导航相关论文