| 注册
首页|期刊导航|河南科技大学学报(自然科学版)|基于轻量级高分辨率网络的金属产品质量检测方法

基于轻量级高分辨率网络的金属产品质量检测方法

韩俊嘉 段成璞 黄景涛

河南科技大学学报(自然科学版)2025,Vol.46Issue(5):40-50,11.
河南科技大学学报(自然科学版)2025,Vol.46Issue(5):40-50,11.DOI:10.15926/j.cnki.issn1672-6871.2025.05.006

基于轻量级高分辨率网络的金属产品质量检测方法

A Lightweight High-Resolution Network-Based Method for Metal Product Quality Inspection

韩俊嘉 1段成璞 2黄景涛3

作者信息

  • 1. 香港大学工程学院,中国香港 999077
  • 2. 广联达科技股份有限公司 北京 100193
  • 3. 河南科技大学信息工程学院,河南洛阳 471023
  • 折叠

摘要

Abstract

Traditional manual inspection suffers from issues such as inconsistent standards and susceptibility to fatigue interference.However,existing deep learning methods based on real-time object detection algorithms tend to lose feature details due to downsampling operations and exhibit high computational complexity,making it difficult to meet precise detection requirements.To address these challenges,this paper proposes a lightweight high-resolution network detection method for metal surface defects.This method preserves subtle defect signals through a full-process high-resolution feature preservation architecture,achieves a lightweight design by integrating depthwise separable convolutions,introduces a conditional channel weighting mechanism to optimize multi-resolution feature fusion,and proposes a global spatial feature extraction method to enhance contextual correlation.Experiments show that the network achieves mAP50 scores of 79.6%and 70.9%on the NEU-DET and GC10-DET datasets,respectively,with a parameter count of only 5.3M and 7.1 GFLOPs.When tested on a dual RTX 4090 GPU setup,it reaches a frame rate of 117 FPS.Compared with previous benchmark models,the proposed method demonstrates significant advantages in both detection accuracy and computational efficiency.Ablation experiments verify the effectiveness of each module,providing a high-precision and low-power solution for real-time industrial detection of metal surface defects.

关键词

智能制造/模式识别/金属表面缺陷/表面质量检测/轻量化模型

Key words

intelligent manufacturing/pattern recognition/metal surface defect/surface quality inspection/lightweight model

分类

信息技术与安全科学

引用本文复制引用

韩俊嘉,段成璞,黄景涛..基于轻量级高分辨率网络的金属产品质量检测方法[J].河南科技大学学报(自然科学版),2025,46(5):40-50,11.

基金项目

国家自然科学基金项目(U1504617) (U1504617)

河南科技大学学报(自然科学版)

OA北大核心

1672-6871

访问量0
|
下载量0
段落导航相关论文