| 注册
首页|期刊导航|人民黄河|基于梯度提升的凌情特征日期预报模型研究

基于梯度提升的凌情特征日期预报模型研究

陈清闲 孙超 脱友才 路新川 李嘉 黄文典

人民黄河2025,Vol.47Issue(11):60-64,70,6.
人民黄河2025,Vol.47Issue(11):60-64,70,6.DOI:10.3969/j.issn.1000-1379.2025.11.009

基于梯度提升的凌情特征日期预报模型研究

Gradient Boosting-Based Forecasting Model for Characteristic Dates of Ice Regime

陈清闲 1孙超 2脱友才 1路新川 2李嘉 1黄文典1

作者信息

  • 1. 四川大学 山区河流保护与治理全国重点实验室,四川 成都 610065
  • 2. 黄河万家寨水利枢纽有限公司,山西 太原 030002
  • 折叠

摘要

Abstract

Accurate forecasting characteristic dates of ice regime is an extremely important aspect of winter ice disasters prevention and dis-patching work in reservoirs.In order to meet the demands of winter ice prevention regulation work at the Wanjiazhai Reservoir,classification model and regression model for the Toudaoguai hydrological station section based on the gradient boosting algorithm were developed.The per-formances of the two types of models were compared and evaluated,and the SHAP interpreter was used to analyze the test results.The results show that the test accuracy of the ice floe date,river closure date and river opening date of the classification model all achieves Grade A,which effectively solves the problem of insufficient model accuracy caused by the lack of training samples.Furthermore,the forecast accuracy of the classification model is significantly better than that of the regression model,suggesting that the prediction of characteristic dates of ice regime can be approached as a classification issue.Air temperature is the most important factor contributing to the prediction of river icing characteristic dates,with a contribution of over 70%.

关键词

凌情特征日期/梯度提升算法/分类模型/回归模型/SHAP/万家寨水库

Key words

characteristic dates of ice regime/gradient boosting algorithm/classification model/regression model/SHAP/Wanjiazhai Res-ervoir

分类

资源环境

引用本文复制引用

陈清闲,孙超,脱友才,路新川,李嘉,黄文典..基于梯度提升的凌情特征日期预报模型研究[J].人民黄河,2025,47(11):60-64,70,6.

基金项目

国家重点研发计划项目(2022YFC3202500) (2022YFC3202500)

人民黄河

OA北大核心

1000-1379

访问量0
|
下载量0
段落导航相关论文