| 注册
首页|期刊导航|上海交通大学学报(医学版)|背根神经节吗啡耐受核心基因筛选与机制研究:加权基因共表达网络分析和机器学习的转录组学整合策略

背根神经节吗啡耐受核心基因筛选与机制研究:加权基因共表达网络分析和机器学习的转录组学整合策略

禹志远 董海平 高楠 马柯

上海交通大学学报(医学版)2025,Vol.45Issue(10):1308-1319,12.
上海交通大学学报(医学版)2025,Vol.45Issue(10):1308-1319,12.DOI:10.3969/j.issn.1674-8115.2025.10.006

背根神经节吗啡耐受核心基因筛选与机制研究:加权基因共表达网络分析和机器学习的转录组学整合策略

Identification and mechanistic analysis of core genes associated with morphine tolerance in dorsal root ganglion:an integrative transcriptomics approach using WGCNA and machine learning algorithms

禹志远 1董海平 2高楠 1马柯1

作者信息

  • 1. 上海交通大学医学院附属新华医院疼痛科,上海 210092
  • 2. 上海交通大学医学院附属新华医院疼痛科,上海 210092||上海交通大学医学院附属仁济医院麻醉科,上海 201112
  • 折叠

摘要

Abstract

Objective·To develop a multi-algorithm collaborative computational biology strategy for constructing a predictive model of the peripheral morphine tolerance network and for screening high-confidence candidate targets.Methods·A murine model of morphine tolerance was established across multiple treatment time points.Bulk RNA sequencing was performed on harvested dorsal root ganglion(DRG)tissues.Using the expression matrix as a basis,a weighted gene co-expression network was constructed to identify co-expressed gene modules.Candidate genes were subsequently screened through the integration of differentially expressed genes(DEGs)with key weighted gene co-expression network modules.These candidates underwent functional annotation via Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses.A protein-protein interaction(PPI)network was established,and hub genes were systematically identified using the cytoHubba algorithm.Three distinct machine learning approaches,least absolute shrinkage and selection operator(LASSO)regression,support vector machine recursive feature elimination(SVM-RFE)model,and random forest(RF)model,were strategically integrated to screen characteristic signature genes.Finally,gene set enrichment analysis(GSEA)was implemented to functionally validate both the hub and signature genes.Results·Weighted gene co-expression network analysis(WGCNA)identified 8 297 key module genes,of which 177 candidate genes overlapped with DEGs.These genes were significantly enriched in biological processes including ion channel regulation and vascular smooth muscle contraction.A combination of PPI network analysis and machine learning revealed four signature genes[actin γ2,smooth muscle(Actg2),centriolar coiled-coil protein 110(Ccp110),neural cell adhesion molecule 2(Ncam2),and selenium binding protein 1(Selenbp1)]and six hub genes[actin α2,smooth muscle(Acta2),von Willebrand factor(Vwf),cellular communication network factor 2(Ccn2),integrin β4(Itgb4),integrin α11(Itga11),and TEK receptor tyrosine kinase(Tek)]closely associated with morphine tolerance.Conclusion·In this study,we successfully constructed a multi-algorithm collaborative peripheral nerve regulation network prediction model for morphine tolerance,and screened out 10 core genes with high confidence.

关键词

吗啡耐受/背根神经节/转录组测序/加权基因共表达网络分析/差异表达基因/机器学习

Key words

morphine tolerance/dorsal root ganglia(DRG)/RNA sequencing/weighted gene co-expression network analysis(WGCNA)/differentially expressed gene(DEG)/machine learning

分类

医药卫生

引用本文复制引用

禹志远,董海平,高楠,马柯..背根神经节吗啡耐受核心基因筛选与机制研究:加权基因共表达网络分析和机器学习的转录组学整合策略[J].上海交通大学学报(医学版),2025,45(10):1308-1319,12.

基金项目

国家自然科学基金(82371224). National Natural Science Foundation of China(82371224). (82371224)

上海交通大学学报(医学版)

OA北大核心

1674-8115

访问量0
|
下载量0
段落导航相关论文