首页|期刊导航|山西医科大学学报|基于3种机器学习方法的神经精神性狼疮影响因素的研究

基于3种机器学习方法的神经精神性狼疮影响因素的研究OA

Inflencing factors of neuropsychiatric lupus erythematosus based on three machine learning methods

中文摘要英文摘要

目的 使用LASSO、XGBoost和RF这3种机器学习方法联合多因素Logistic回归方法探索神经精神性狼疮(NPSLE)的影响因素.方法 收集2021年1月至2024年6月于山西医科大学第二医院风湿免疫科住院的401例系统性红斑狼疮(SLE)患者的病例资料,根据是否诊断为NPSLE将患者划分为N-NPSLE组(未发生NPSLE)和NPSLE组(发生NPSLE),其余变量作为解释变量.采用LASSO、XGBoost及RF方法进行特征变量筛选,对交集变量进行共线性检验,并进行多因素Logistic回归分析.结果 LASSO筛选出18个特征变量,XGBoost筛选出21个变量,RF筛选出20个变量.3种方法筛选出8个共同变量:年龄、头痛、免疫球蛋白IgA、补体C3、活化部分凝血活酶时间(APTT)、抗Rib-P抗体、可溶性白细胞介素-2受体(sIL-2R)、系统性红斑狼疮疾病活动指数(SLEDAI-2k)评分.共线性检验方差膨胀因子(VIF)值显示各变量间不存在多重共线性,多因素Lo-gistic 回归结果显示SLE患者中年龄(OR=0.936,95%CI 0.904~0.969)是发生NPSLE的保护因素,头痛(OR=47.153,95%CI 13.065~170.214)、抗Rib-P抗体阳性(OR=1.082,95%CI 1.036~1.129)和SLEDAI-2k高评分(OR=5.176,95%CI 3.210~8.347)是危险因素.结论 年龄是NPSLE发生的保护因素,头痛、抗Rib-P抗体阳性、SLEDAI-2k高评分为NPSLE发生的危险因素.

Objective To explore influencing factors of neuropsychiatric systemic lupus erythematosus using LASSO,XGBoost,and RF combined with multivariate Logistic regression.Methods Medical records of 401 systemic lupus erythematosus(SLE)patients hospitalized in the Department of Rheumatology and Immunology in the Second Hospital of Shanxi Medical University from January 2021 to June 2024 were collected.Based on the diagnosis of neuropsychiatric systemic lupus erythematosus(NPSLE),the patients were divided into N-NPSLE group(without NPSLE)and NPSLE group,with the remaining variables serving as explanatory variables.Characteristic variables were selected using LASSO,XGBoost,and RF methods.Common variables from the three methods were as-sessed for multicollinearity,and analyzed by multivariate Logistic regression.Results A total of 18 variables were selected by LASSO,21 variables were selected by XGBoost,and 20 variables were selected by RF.Eight common variables were selected by the three methods,including age,headache,IgA,C3,activated partial thromboplastin time(APTT),anti-ribosomal P protein,and soluble interleukin-2 receptor(sIL-2R),and systemic lupus erythematosus disease activity index(SLEDAI-2k)score.The variance in-flation factor(VIF)values from the multicollinearity test showed that there was no multicollinearity among the variables.Multivariate Logistic regression analysis revealed that age was a protective factor for the incidence of NPSLE in SLE patients(OR=0.936,95%CI 0.904-0.969),while headache(OR=47.153,95%CI 13.065-170.214),anti-ribosomal P protein positive(OR=1.082,95%CI 1.036-1.129),and higher SLEDAI-2k score(OR=5.176,95%CI 3.210-8.347)were risk factors.Conclusion Age is a protective factor for NPSLE,and headache,anti-ribosomal P protein positive,and higher SLEDAI-2k score are risk factors for NPSLE.

朱闫乐;王晓霞;周晓婷;李旭洁

山西医科大学公共卫生学院统计教研室,太原 030001山西医科大学公共卫生学院统计教研室,太原 030001||山西医科大学第二医院风湿免疫科山西医科大学第二临床医学院风湿免疫科山西医科大学第二临床医学院风湿免疫科

临床医学

系统性红斑狼疮机器学习方法神经精神性狼疮特征变量筛选Logistic回归影响因素

systemic lupus erythematosusmachine learning methodneuropsychiatric systemic lupus erythematosusfeature variable selectionLogistic regressioninfluencing factors

《山西医科大学学报》 2025 (9)

1090-1095,6

10.13753/j.issn.1007-6611.2025.09.014

评论