| 注册
首页|期刊导航|空天防御|基于深度学习的SAR图像舰船尾迹旋转框检测算法研究

基于深度学习的SAR图像舰船尾迹旋转框检测算法研究

夏伊琳 刘刚 鄢丛强 蔡云泽

空天防御2025,Vol.8Issue(5):64-74,11.
空天防御2025,Vol.8Issue(5):64-74,11.

基于深度学习的SAR图像舰船尾迹旋转框检测算法研究

Research on Deep Learning-Based Rotation Detection Algorithms for Ship Wakes in SAR Images

夏伊琳 1刘刚 2鄢丛强 3蔡云泽4

作者信息

  • 1. 上海交通大学 自动化与感知学院,上海 200240||上海交通大学 系统控制与信息处理教育部重点实验室,上海 200240
  • 2. 上海卫星工程研究所,上海 201109
  • 3. 中国航空无线电电子研究所,上海 200241
  • 4. 上海交通大学 自动化与感知学院,上海 200240||上海交通大学 系统控制与信息处理教育部重点实验室,上海 200240||上海交通大学 海底科学与划界全国重点实验室,上海 200240
  • 折叠

摘要

Abstract

This paper proposed a deep learning-based rotated bounding box detection algorithm for ship wake detection in synthetic aperture radar(SAR)images.The proposed algorithm addressed the issue of background pixel redundancy in horizontal bounding box detection algorithms and the complex design of traditional detection methods,which fail to identify curved wakes effectively.The overall network framework of the algorithm consisted of three core components:a feature extraction module,a feature fusion module,and a prediction head network.The feature extraction module was responsible for extracting key feature information from the input SAR images.The feature fusion module further integrated these features to enhance the model's perception of the wake morphology.Finally,the prediction head network would provide precise target localization based on the fused features.The results of the rotated bounding box detection were acquired,including the center point position and rotation angle.Experimental results show that compared to other rotated target detection algorithms,the proposed algorithm achieves higher accuracy in SAR image ship wake detection tasks and effectively distinguishes between targets and backgrounds,thus accomplishing the task of SAR image ship wake detection under various scenarios.

关键词

SAR图像/深度学习/舰船尾迹检测

Key words

SAR Images/deep learning/ship wake detection

分类

电子信息工程

引用本文复制引用

夏伊琳,刘刚,鄢丛强,蔡云泽..基于深度学习的SAR图像舰船尾迹旋转框检测算法研究[J].空天防御,2025,8(5):64-74,11.

基金项目

航空科学基金项目(20220001057001,20240001057002) (20220001057001,20240001057002)

空天防御

2096-4641

访问量0
|
下载量0
段落导航相关论文