| 注册
首页|期刊导航|网络与信息安全学报|基于风险权值聚合联邦学习的金融欺诈检测模型

基于风险权值聚合联邦学习的金融欺诈检测模型

孙元林 王楠 张焘 刘娟 赵沁馨

网络与信息安全学报2025,Vol.11Issue(5):88-100,13.
网络与信息安全学报2025,Vol.11Issue(5):88-100,13.DOI:10.11959/j.issn.2096-109x.2025056

基于风险权值聚合联邦学习的金融欺诈检测模型

Financial fraud detection model based on risk weight aggregation federated learning

孙元林 1王楠 2张焘 2刘娟 3赵沁馨4

作者信息

  • 1. 北京交通大学软件学院,北京 100044||吉林大学符号计算与知识工程教育部重点实验室,吉林 长春 130012
  • 2. 北京交通大学网络空间安全学院,北京 100044
  • 3. 北京交通大学软件学院,北京 100044
  • 4. 南京大学软件学院,江苏 南京 210008
  • 折叠

摘要

Abstract

Financial fraud had caused significant losses to financial institutions and consumers,making the rapid,effective,and accurate identification and prevention of financial fraud a widely concerned issue.Machine learning and deep learning technologies had received extensive research attention due to their capability to effectively detect dynamic and changing fraud patterns.However,the privacy and confidentiality requirements of financial data were found to limit the practical application of data-driven intelligent analysis technologies,including deep learning,in the financial field.Therefore,research on how to conduct collaborative training and establish effective fraud detec-tion models while ensuring data privacy and security was considered to be of great value.To address these chal-lenges,a risk weight aggregation federated learning(FedRWA)method was proposed for multi-model fusion.A central anomaly detection model was constructed to achieve multi-source sensitive data model fusion learning while ensuring data privacy.This approach enabled the central joint model to accurately capture the fraud risk char-acteristics of each institution's private dataset,thereby improving fraud detection effectiveness.To verify the effec-tiveness of the proposed method,experiments were conducted using a credit card transaction dataset.The experi-mental results demonstrate that the FedRWA method performs better than numerous cutting-edge federated learning methods,could detect more and larger fraud samples,and further enhances the security of private data.

关键词

联邦学习/金融欺诈/风险权值/欺诈检测

Key words

federated learning/financial fraud/risk weight/fraud detection

分类

信息技术与安全科学

引用本文复制引用

孙元林,王楠,张焘,刘娟,赵沁馨..基于风险权值聚合联邦学习的金融欺诈检测模型[J].网络与信息安全学报,2025,11(5):88-100,13.

基金项目

国家自然科学基金(62202042) (62202042)

中央高校基本科研业务费专项基金(2024JBMC031) (2024JBMC031)

航空科学基金(ASFC-2024Z0710M5002) (ASFC-2024Z0710M5002)

先进密码技术与系统安全四川省重点实验室开放课题资助项目(SKLACSS-202312) The Natural Science Foundation of China(62202042),Fundamental Research Funds for the Central Univer-sities(2024JBMC031),Aeronautical Science Foundation of China(ASFC-2024Z0710M5002),OpenFund of Advanced Cryp-tography and System Security Key Laboratory of Sichuan Province(SKLACSS-202312) (SKLACSS-202312)

网络与信息安全学报

2096-109X

访问量15
|
下载量0
段落导航相关论文