| 注册
首页|期刊导航|现代电子技术|基于改进YOLOv8s的螺栓缺销目标检测方法

基于改进YOLOv8s的螺栓缺销目标检测方法

邵罗 吐松江·卡日 依马木·艾山 周远翔 马小晶

现代电子技术2025,Vol.48Issue(22):81-87,7.
现代电子技术2025,Vol.48Issue(22):81-87,7.DOI:10.16652/j.issn.1004-373x.2025.22.015

基于改进YOLOv8s的螺栓缺销目标检测方法

Method of pin-losing bolt object detection based on improved YOLOv8s

邵罗 1吐松江·卡日 1依马木·艾山 2周远翔 3马小晶1

作者信息

  • 1. 新疆大学 电气工程学院,新疆 乌鲁木齐 830049
  • 2. 新疆维吾尔自治区特种设备检验研究院,新疆 乌鲁木齐 830011
  • 3. 清华大学 电机系,北京 100084
  • 折叠

摘要

Abstract

In allusion to problem of low accuracy in pin-losing bolt fault detection caused by the small target proportion and complex background in the bolt images collected by drones,a transmission line pin-losing bolt fault detection algorithm based on improved YOLOv8s is proposed.The target detection layer is improved based on YOLOv8s,and the model's ability to capture small target features is improved by increasing the upsampling multiple.The collaborative attention module is constructed to emphasize the scale information of bolt targets while diminishing background information,thereby further enhancing the capability of target detection in complex backgrounds.The C2f_DASI module is designed to enrich the semantic information of target features and enhance the network's ability to perform nonlinear mapping of complex features,as well as improve the overall feature representation capability.The deconvolution module is introduced to adjust the size of the convolutional kernels,so as to reduce the computational complexity of the model.The experimental results indicate that in comparison with the original model,the average accuracy of the improved model is improved by 5.8%,and the average accuracy,recall rate and accuracy ofpin-losing bolt fault detection are improved by 11.6%,6.0%and 4.1%respectively,which can effectively detect the pin-losing bolt fault of transmission line.

关键词

输电线路/螺栓缺销/故障检测/YOLOv8s/协同注意力/C2f_DASI/逆卷积

Key words

transmission line/pin-losing bolt/fault detection/YOLOv8s/collaborative attention/C2f_DASI/deconvolution

分类

电子信息工程

引用本文复制引用

邵罗,吐松江·卡日,依马木·艾山,周远翔,马小晶..基于改进YOLOv8s的螺栓缺销目标检测方法[J].现代电子技术,2025,48(22):81-87,7.

基金项目

国家自然科学基金项目(52067021) (52067021)

新疆维吾尔自治区自然科学基金面上项目(2022D01C35) (2022D01C35)

新疆维吾尔自治区优秀青年科技人才培养项目(2019Q012) (2019Q012)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文