| 注册
首页|期刊导航|心理学报|人类对大语言模型的热情和能力感知

人类对大语言模型的热情和能力感知

武月婷 王博 包寒吴霜 李若男 吴怡 王嘉琪 程诚 杨丽

心理学报2025,Vol.57Issue(11):2043-2059,17.
心理学报2025,Vol.57Issue(11):2043-2059,17.DOI:10.3724/SP.J.1041.2025.2043

人类对大语言模型的热情和能力感知

Humans perceive warmth and competence in large language models

武月婷 1王博 2包寒吴霜 3李若男 1吴怡 1王嘉琪 1程诚 4杨丽5

作者信息

  • 1. 天津大学教育学院
  • 2. 天津大学智能与计算学部||天津大学应用心理研究所,天津 300354
  • 3. 华东师范大学心理与认知科学学院,上海 200062
  • 4. 天津大学应用心理研究所,天津 300354
  • 5. 天津大学应用心理研究所,天津 300354||天津市自杀心理与行为研究实验室,天津 300354
  • 折叠

摘要

Abstract

The rapid development and application of Large Language Models(LLMs)have significantly enhanced their capabilities,influencing human-machine interactions in profound ways.As LLMs evolve,society is shifting from traditional interpersonal interactions to a multilayered structure integrating human-to-human,human-to-machine,and machine-to-machine interactions.In this context,understanding how humans perceive and evaluate LLMs-and whether this follows the Big Two model of warmth and competence in interpersonal perception-has become critical.This study examines human perceptions of LLMs through three progressive empirical studies. Participants with prior LLM experience were recruited for the studies.Study 1 comprised two sub-studies:Study 1a(N=207)used a free-response task,asking participants to describe their impressions of LLMs using at least three words,which were analyzed using the Semi-Automated Dictionary Creation for Analyzing Text to identify key dimensions of perception.Study 1b(N=219)involved a lexical rating task,in which participants rated the applicability of selected evaluation words to LLMs.Study 2(N=178)used a questionnaire,in which participants rated a familiar LLM and provided feedback on their willingness to continue using it and their liking of it.Study 3(N=207)employed a questionnaire survey to assess participants' ratings of warmth and competence for both humans and LLMs. Study 1 found that humans primarily perceive LLMs through warmth and competence,similar to how they perceive other humans.In general contexts,participants prioritized competence over warmth when evaluating LLMs,showing a significant priority effect(odds ratio=2.88,z=9.512,95%CI[2.32,3.59],p<0.001).This contrasts with the typical warmth-priority effect in human-to-human perception.Study 2 investigated the relationship between perceptions of warmth and competence and human attitudes toward LLMs,specifically their emotional(e.g.,liking)and functional(e.g.,willingness to continue using)attitudes.Results showed that both dimensions positively predicted participants' liking and willingness to continue using LLMs.Warmth had a stronger predictive effect on liking(warmth:β=0.41,p<0.001;competence:β=0.27,p<0.001),while competence had a stronger predictive effect on willingness to continue using(warmth:β=0.19,p=0.005;competence:β=0.45,p<0.001).This outcome suggests that the priority effect of warmth and competence shifts across attitude predictions.Study 3 examined specific LLMs ratings in terms of warmth and competence.Results showed no significant difference in warmth ratings between humans(M=5.06,SD=1.09)and LLMs(M=5.11,SD=1.23),t(206)=-0.60,p=0.551.However,LLMs were rated significantly higher on competence(M=5.16,SD=1.20)than humans(M=4.81,SD=1.23),t(206)=-3.51,p<0.001,Cohen's d=-0.29. This study makes two significant contributions to the field.First,it establishes a preliminary theoretical framework for understanding human perception of LLMs.Second,it offers new insights into human-machine interaction by emphasizing the importance of warmth and competence in shaping user attitudes.The findings have practical implications for AI design and policymaking,providing a framework for improving user acceptance,optimizing LLM design,and promoting responsible human-AI coexistence.

关键词

大语言模型/社会认知/热情/能力

Key words

large language model/social cognition/warmth/competence

分类

心理学

引用本文复制引用

武月婷,王博,包寒吴霜,李若男,吴怡,王嘉琪,程诚,杨丽..人类对大语言模型的热情和能力感知[J].心理学报,2025,57(11):2043-2059,17.

基金项目

国家自然科学基金面上项目(项目编号:62376188),国家社会科学基金一般项目(项目编号:21BSH017,22BSH163),2024年第一批天津市制造业高质量发展专项建设智能化数字化应用场景-自主智能算力的通用大模型关键技术研究及产业化应用示范项目(项目编号24ZGNGX00020)支持. (项目编号:62376188)

心理学报

OA北大核心

0439-755X

访问量0
|
下载量0
段落导航相关论文