| 注册
首页|期刊导航|信息工程大学学报|基于ViT-KANs的双头通信网络协议数据类别概念漂移检测分类算法

基于ViT-KANs的双头通信网络协议数据类别概念漂移检测分类算法

王润泽 张效义 李青 任俊康 陈奕凡

信息工程大学学报2025,Vol.26Issue(5):520-527,8.
信息工程大学学报2025,Vol.26Issue(5):520-527,8.DOI:10.3969/j.issn.1671-0673.2025.05.003

基于ViT-KANs的双头通信网络协议数据类别概念漂移检测分类算法

A ViT-KANs-Based Dual-Head Algorithm for Communication Network Protocol Data Category Concept Drift Detection and Classification

王润泽 1张效义 1李青 1任俊康 1陈奕凡1

作者信息

  • 1. 信息工程大学,河南 郑州 450001
  • 折叠

摘要

Abstract

To address the issue of category concept drift in network protocol data,a ViT-KANs-based dual-head algorithm for communication network protocol data category concept drift detection and clas-sification is proposed.The global perception capability of vision transformer(ViT)and the flexible function approximation ability of kolmogorov-arnold networks(KANs)are integrated to construct an ef-ficient feature extraction network in this algorithm.A dual-head parallel output structure is adopted to handle the classification of old-class data and the detection of category concept drift,respectively.Fur-thermore,the validation set data is utilized to adaptively compute the confidence threshold,which ef-fectively alleviates the lack of concept drift samples during the training phase.Experiments are con-ducted on three datasets,namely the Moore dataset,the Canadian Institute for Cybersecurity Intrusion Detection Evaluation Dataset 2017(CICIDS2017),and the improved version of the Network Security Lab(NSL)-Knowledge Discovery and Data Mining Competition Dataset(NSL-KDD).The results show that the detection error rate of the proposed method is reduced significantly,compared to those of mod-els and out-of-distribution detection methods,while superior classification accuracy category is maintained.

关键词

类别概念漂移/ViT-KANs模型/双头网络/置信度阈值/网络协议数据

Key words

category concept drift/ViT-KANs/dual-head network/confidence threshold/network protocol data

分类

电子信息工程

引用本文复制引用

王润泽,张效义,李青,任俊康,陈奕凡..基于ViT-KANs的双头通信网络协议数据类别概念漂移检测分类算法[J].信息工程大学学报,2025,26(5):520-527,8.

信息工程大学学报

1671-0673

访问量0
|
下载量0
段落导航相关论文