| 注册
首页|期刊导航|烟草科技|基于EfficientNet-GECA模型的烘烤过程关键温度点烟叶状态识别

基于EfficientNet-GECA模型的烘烤过程关键温度点烟叶状态识别

张恒 陈栋 张富生 徐嫱 陈广晴 过伟民 周硕野 成钊 蔡宪杰 刘剑君 李俊营 张艳玲 王爱国

烟草科技2025,Vol.58Issue(10):33-46,14.
烟草科技2025,Vol.58Issue(10):33-46,14.DOI:10.16135/j.issn1002-0861.2024.0883

基于EfficientNet-GECA模型的烘烤过程关键温度点烟叶状态识别

Recognition of tobacco leaf status at key temperature points during flue-curing process based on EfficientNet-GECA model

张恒 1陈栋 2张富生 1徐嫱 3陈广晴 4过伟民 3周硕野 5成钊 3蔡宪杰 6刘剑君 5李俊营 1张艳玲 3王爱国3

作者信息

  • 1. 河南省烟草公司平顶山市公司,河南省平顶山市新华区建设路西段263号 467002
  • 2. 北京市农林科学院信息技术研究中心,北京市海淀区曙光花园中路11号 100097
  • 3. 中国烟草总公司郑州烟草研究院,郑州高新技术产业开发区枫杨街2号 450001
  • 4. 河南省烟草公司三门峡市公司,河南省三门峡市湖滨区崤山东路7号 472000
  • 5. 中国烟草总公司河南省公司,郑州市金水区商务外环路15号 450046
  • 6. 上海烟草集团有限责任公司,上海市杨浦区长阳路717号 200082
  • 折叠

摘要

Abstract

In order to intelligently monitor the status of tobacco leaves during flue-curing process,image acquisition devices were used to collect image data of tobacco leaves,and an recognition model for the yellowing and drying status of tobacco leaves was developed by using manual annotation and an improved EfficientNet-GECA model based on EfficientNet-B0 to analyze the changes of tobacco leaves at key temperature points during 354 flue-curing processes in three tobacco producing areas including Nanyang,Sanmenxia,and Pingdingshan in Henan Province.The results showed that:1)Compared with the classic neural network models such as MobileNetV2,MobileNetV3,VGG16,ShuffleNetV2,ResNet50 and EfficientNet-B0,the EfficientNet-GECA model increased the recognition accuracies of the test set for the yellowing and drying status of tobacco leaves by 1.81 to 32.36 percentage points and 1.98 to 25.84 percentage points,respectively,with recognition accuracies of 88.74%and 80.47%,respectively.2)The main yellowing status of tobacco leaves from Nanyang,Sanmenxia and Pingdingshan production areas at the key temperature points of 38,40,42,45,48 and 54℃during the flue-curing process were relatively consistent,while there were significant differences in the drying status of tobacco leaves among the different production areas at the key temperature points including 40,42 and 54℃.The established recognition model for tobacco leaf yellowing and drying status based on EfficientNet-GECA model can be used for intelligent monitoring of tobacco leaf status during flue-curing process,providing a basis for developing customized regulation and control strategies during tobacco leaf curing process.

关键词

烟叶烘烤/图像数据集/深度学习/变黄状态/干燥状态

Key words

Tobacco flue-curing/Image dataset/Deep learning/Yellowing status/Drying status

分类

农业科技

引用本文复制引用

张恒,陈栋,张富生,徐嫱,陈广晴,过伟民,周硕野,成钊,蔡宪杰,刘剑君,李俊营,张艳玲,王爱国..基于EfficientNet-GECA模型的烘烤过程关键温度点烟叶状态识别[J].烟草科技,2025,58(10):33-46,14.

基金项目

中国烟草总公司重大科技项目"烟叶高质量科学图像数据集构建关键技术研究"(110202201051) (110202201051)

河南省烟草公司重点科技项目"基于图像识别技术的热泵烤房智能烘烤技术研究与应用"(2024410000240029) (2024410000240029)

河南省烟草公司三门峡市公司科技项目"基于数字孪生技术的烟叶智能烘烤工场关键技术研究与应用"(2024411200200019X). (2024411200200019X)

烟草科技

OA北大核心

1002-0861

访问量0
|
下载量0
段落导航相关论文