| 注册
首页|期刊导航|烟草科技|基于轻量化语义分割模型的再造烟叶表面缺陷检测方法

基于轻量化语义分割模型的再造烟叶表面缺陷检测方法

王水明 吴千旭 李鹏飞 黄文 陈前进 段州君 彭瑞 舒衡 魏宁丰 张涛

烟草科技2025,Vol.58Issue(10):103-112,10.
烟草科技2025,Vol.58Issue(10):103-112,10.DOI:10.16135/j.issn1002-0861.2025.0020

基于轻量化语义分割模型的再造烟叶表面缺陷检测方法

Surface defect detection for reconstituted tobacco based on a lightweight semantic segmentation model

王水明 1吴千旭 2李鹏飞 1黄文 1陈前进 1段州君 1彭瑞 1舒衡 1魏宁丰 3张涛3

作者信息

  • 1. 湖北中烟工业有限责任公司,武汉市东西湖区海口二路2号 430040||湖北新业烟草薄片开发有限公司,武汉市经济技术开发区万家湖路132号 430056
  • 2. 华中科技大学航空航天学院,武汉市洪山区珞瑜路1037号 430074
  • 3. 武汉纺织大学机械工程与自动化学院,武汉市江夏区阳光大道1号 430200
  • 折叠

摘要

Abstract

To address the issue of low detection efficiency of surface defects for reconstituted tobacco,a detection method based on a lightweight semantic segmentation model was proposed and evaluated.Firstly,reconstituted tobacco samples were batch processed to construct a sample dataset.Secondly,the Labelme software was used to label and classify the defects,and sufficient model training samples were obtained through the sliding window sampling method.Finally,the lightweight semantic segmentation model Deeplab-T was constructed using MobileNetV2 and the void convolution as the backbone network,and the convolutional block attention module was introduced in the feature fusion process to highlight the segmentation target.The results showed that:1)The mean intersection over union and mean pixel accuracy of Deeplab-T model were 76.35%and 83.71%,respectively,which were 13.98 and 15.32 percentage points higher than those of the DeeplabV3+model.Additionally,the detection frames per second was increased by 234.10%,meeting the industrial requirements for both accuracy and speed.2)The Deeplab-T model achieved the contour segmentation of reconstituted tobacco defects in different directions,proportions and of different types with good robustness.This study provides a theoretical reference for the online monitoring of typical defects in reconstituted base sheet making process.

关键词

再造烟叶/深度学习/语义分割/CBAM注意力机制/表面缺陷检测

Key words

Reconstituted tobacco/Deep learning/Semantic segmentation/CBAM attention mechanism/Surface defect detection

分类

轻工业

引用本文复制引用

王水明,吴千旭,李鹏飞,黄文,陈前进,段州君,彭瑞,舒衡,魏宁丰,张涛..基于轻量化语义分割模型的再造烟叶表面缺陷检测方法[J].烟草科技,2025,58(10):103-112,10.

基金项目

湖北省自然科学基金面上项目"融合结构和多传感数据的微流道增材制造缺陷监测方法研究"(2023AFB878) (2023AFB878)

湖北省自然科学基金青年项目"可调环形光斑对铝合金薄壁构件激光焊接飞溅的抑制机理与工艺调控"(2024AFB259). (2024AFB259)

烟草科技

OA北大核心

1002-0861

访问量0
|
下载量0
段落导航相关论文