| 注册
首页|期刊导航|自动化学报|面向电力系统快速频率响应的数据与模型驱动预测控制

面向电力系统快速频率响应的数据与模型驱动预测控制

吴卓睿 张萌 管晓宏

自动化学报2025,Vol.51Issue(10):2337-2346,10.
自动化学报2025,Vol.51Issue(10):2337-2346,10.DOI:10.16383/j.aas.c250261

面向电力系统快速频率响应的数据与模型驱动预测控制

Data and Model-driven Predictive Control for Fast Frequency Response in Power Systems

吴卓睿 1张萌 1管晓宏1

作者信息

  • 1. 西安交通大学网络空间安全学院 西安 710049
  • 折叠

摘要

Abstract

A key objective of power system control is to maintain frequency stability.However,high penetration of renewable energy resources may cause frequent power fluctuations,resulting in negative impact on system fre-quency regulation.To deal with this issue,it commonly requires to rapidly adjust the power output of inverter-based resources in response to system frequency fluctuations,achieving fast frequency control.This paper proposes a data and model-driven predictive control method for fast frequency control in power systems.First,a data-driven disturbance observer is designed to estimate system disturbance such as load changes,renewable energy fluctu-ations and so on.To optimize the control performance,the reference governor designed by a neural network provides virtual reference for the model predictive controller.The reference governor enhances the performance of the controller with a short prediction horizon through learning a long prediction horizon model predictive controller,thus reducing the required computation time.Finally,simulation comparison results demonstrate that the proposed method can effectively improve the frequency control performance.

关键词

快速频率控制/变流器资源/模型预测控制/参考调节器/深度学习

Key words

Fast frequency control/inverter-based resource/model predictive control/reference governor/deep learning

引用本文复制引用

吴卓睿,张萌,管晓宏..面向电力系统快速频率响应的数据与模型驱动预测控制[J].自动化学报,2025,51(10):2337-2346,10.

基金项目

国家自然科学基金(62033005,62273270),能源陕西实验室项目(ESLB202413)资助Supported by National Natural Science Foundation of China(62033005,62273270)and S&T Program of Energy Shaanxi Laboratory(ESLB202413) (62033005,62273270)

自动化学报

OA北大核心

0254-4156

访问量0
|
下载量0
段落导航相关论文