| 注册
首页|期刊导航|中国防痨杂志|基于机器学习算法的诊断模型对结核性胸膜炎的应用价值

基于机器学习算法的诊断模型对结核性胸膜炎的应用价值

李婷婷 刘欢庆 雷倩 尤著宏 赵国连

中国防痨杂志2025,Vol.47Issue(11):1508-1514,7.
中国防痨杂志2025,Vol.47Issue(11):1508-1514,7.DOI:10.19982/j.issn.1000-6621.20250224

基于机器学习算法的诊断模型对结核性胸膜炎的应用价值

Application value of machine-learning-based diagnostic model on tuberculous pleurisy

李婷婷 1刘欢庆 2雷倩 3尤著宏 2赵国连4

作者信息

  • 1. 西安市胸科医院药物临床试验机构办公室,西安 710100
  • 2. 西北工业大学信息化管理处,西安 710072
  • 3. 西安市胸科医院药剂科,西安 710100
  • 4. 西安市胸科医院检验科,西安 710100
  • 折叠

摘要

Abstract

Objective:To develop a machine-learning-based predictive model for diagnosing tuberculous pleurisy(TBP)to improve clinical diagnostic accuracy.Methods:We retrospectively collected clinical data of 523 pleural effusion patients(375 with TBP and 148 with non-TBP)admitted in Xi'an Chest Hospital between January 2020 and December 2021.Fifteen indicators,including adenosine deaminase(ADA),tuberculosis infection T-cell spot test(T-SPOT.TB),and C-reactive protein(CRP),were incorporated.Seven machine learning algorithms,including random forest,support vector machine,and neural network,were employed to construct predictive models.Model performances were evaluated using 5-fold cross-validation.Feature importance was analyzed using SHapley Additive exPlanations(SHAP).Results:The model developed with Neural Network demonstrated optimal performance,achieving an area under the curve(AUC)of 0.932 on the test set,with an accuracy of 88.6%,precision of 94.4%,and recall rates of 89.3%.SHAP analysis identified ADA(SHAP value=0.12~0.18)and T-SPOT.TB(SHAP value=0.10~0.15)as two most significant predictors,with a notable synergistic effect(P<0.001).Conclusion:The Neural Network machine learning model developed in this study exhibited excellent diagnostic performance.Through interpretable analysis,key predictive factors and their interactions were elucidated,providing a novel tool for precise diagnosis of TBP.This model can assist clinical decision-making,particularly for cases in the"gray zone"under conventional diagnostic criteria.

关键词

结核/胸膜炎/诊断,计算机辅助/模型,统计学/人工智能

Key words

Tuberculosis/Pleurisy/Diagnosis,computer-assisted/Models,statistical/Artificial intelligence algorithms

分类

临床医学

引用本文复制引用

李婷婷,刘欢庆,雷倩,尤著宏,赵国连..基于机器学习算法的诊断模型对结核性胸膜炎的应用价值[J].中国防痨杂志,2025,47(11):1508-1514,7.

中国防痨杂志

OA北大核心

1000-6621

访问量0
|
下载量0
段落导航相关论文