| 注册
首页|期刊导航|中国农业科技导报|基于改进YOLO v8n-seg的群猪分割方法研究

基于改进YOLO v8n-seg的群猪分割方法研究

王兴家 郑纪业 盛清凯 杨亮 张霞

中国农业科技导报2025,Vol.27Issue(11):120-130,11.
中国农业科技导报2025,Vol.27Issue(11):120-130,11.DOI:10.13304/j.nykjdb.2024.0393

基于改进YOLO v8n-seg的群猪分割方法研究

Research on Group Pig Segmentation Method Based on Improved YOLO v8n-seg

王兴家 1郑纪业 1盛清凯 2杨亮 3张霞4

作者信息

  • 1. 山东省农业科学院农业信息与经济研究所,济南 250100||聊城大学物理科学与信息工程学院,山东 聊城 252000
  • 2. 山东省农业科学院畜牧兽医研究所,山东省畜禽疫病防治与繁育重点实验室,济南 250100
  • 3. 中国农业科学院北京畜牧兽医研究所,畜禽营养与饲养全国重点实验室,北京 100193
  • 4. 聊城大学物理科学与信息工程学院,山东 聊城 252000
  • 折叠

摘要

Abstract

Aiming at the problems of low accuracy of pig image segmentation and insufficient real-time segmentation in complex scenes,an algorithm for segmentation modeling of group pig instances based on improved YOLO v8n-seg was proposed.Based on YOLO v8n-seg,GhostConv was firstly introduced into the C2f module to reduce the computational complexity of the model.Secondly,attention mechanisms such as spatial group-wise enhancement,involution,and multidimensional collaborative attention were added at different locations of the network structure for enhancing the model's for feature extraction and fusion.Finally,wise IoU(WIoU)was chosen as a new loss function to speed up the convergence of the model and improve the overall performance of the detector.The results showed that,compared to the original model,the improved model reduced the number of parameters by 0.39 M.In terms of detection accuracy,the precision was improved by 3.7 percentage point,the recall by 4.8 percent point,the mean average precision of intersection over union threshold value 50%and 50%to 95%by 4.6 and 7.6 percent point,respectively,and the frames-per-second by 5.2,which showed good performance.A large improvement in both accuracy and speed were achieved by improving the YOLO v8n-seg,especially for the problem of reduced segmentation accuracy due to pig adhesion and mild occlusion in group rearing scenarios,the model showed excellent performance and was able to accurately segment individual pigs in a group,which provided a strong support for practical production applications.

关键词

智慧养殖/YOLO v8//实例分割/注意力机制

Key words

intelligent farming/YOLO v8/pigs/instance segmentation/attention mechanism

分类

农业科学

引用本文复制引用

王兴家,郑纪业,盛清凯,杨亮,张霞..基于改进YOLO v8n-seg的群猪分割方法研究[J].中国农业科技导报,2025,27(11):120-130,11.

基金项目

山东省重点研发计划项目(2022TZXD0016). (2022TZXD0016)

中国农业科技导报

OA北大核心

1008-0864

访问量0
|
下载量0
段落导航相关论文