| 注册
首页|期刊导航|智慧农业导刊|荔枝劣变的多模态传感感知与智能识别

荔枝劣变的多模态传感感知与智能识别

朱启明 罗剑斌 杨图信 郭少英 滕丽丽 潘朝勃

智慧农业导刊2025,Vol.5Issue(20):13-16,4.
智慧农业导刊2025,Vol.5Issue(20):13-16,4.DOI:10.20028/j.zhnydk.2025.20.004

荔枝劣变的多模态传感感知与智能识别

朱启明 1罗剑斌 1杨图信 2郭少英 3滕丽丽 1潘朝勃1

作者信息

  • 1. 广东茂名农林科技职业学院,广东 茂名 525000
  • 2. 广东小蜂嗡嗡农业科技发展有限公司,广东 茂名 525000
  • 3. 岭南现代农业科学与技术广东省实验室茂名分中心,广东 茂名 525000
  • 折叠

摘要

Abstract

In response to the deterioration problems such as browning of the peel and softening of the flesh during postharvest storage and transportation of Lychee,a multi-modal sensing and detection system integrating machine vision,gas sensor array and self-made pressure testing device has been built.By extracting visual features such as color,shape,and texture,detecting changes in volatile compound components,and measuring textural and mechanical parameters to obtain multi-dimensional characteristic data of Lychee deterioration.Establish a CNN-LSTM fusion network model to realize multimodal data fusion and intelligent recognition.Experimental results showed that Lychee began to deteriorate significantly on the third day of storage.The peel brightness value L* dropped from 72.5 to 45.2,and the hardness dropped from 856 N to 312 N.The accuracy rate of the constructed multi-modal fusion identification model reaches 96.8%,which is 12%~18%higher than that of a single sensing mode,providing an effective technical solution for rapid and non-destructive testing of Lychee quality.

关键词

荔枝劣变/多模态传感/CNN-LSTM网络/特征融合/智能识别

Key words

Lychee deterioration/multimodal sensing/CNN-LSTM network/feature fusion/intelligent recognition

分类

园艺学与植物营养学

引用本文复制引用

朱启明,罗剑斌,杨图信,郭少英,滕丽丽,潘朝勃..荔枝劣变的多模态传感感知与智能识别[J].智慧农业导刊,2025,5(20):13-16,4.

基金项目

广东省普通高校青年创新人才类项目(2023KQNCX265) (2023KQNCX265)

茂名市科技计划项目(2023S011) (2023S011)

智慧农业导刊

2096-9902

访问量0
|
下载量0
段落导航相关论文