| 注册
首页|期刊导航|铸造技术|基于贝叶斯优化机器学习的转炉耗氧量预测研究

基于贝叶斯优化机器学习的转炉耗氧量预测研究

丁志豪 信自成 张江山 刘青

铸造技术2025,Vol.46Issue(10):948-953,6.
铸造技术2025,Vol.46Issue(10):948-953,6.DOI:10.16410/j.issn1000-8365.2025.5146

基于贝叶斯优化机器学习的转炉耗氧量预测研究

Research on the Prediction of Oxygen Consumption in Converters via Bayesian-optimized Machine Learning

丁志豪 1信自成 2张江山 1刘青1

作者信息

  • 1. 北京科技大学 绿色低碳钢铁冶金全国重点实验室,北京 100083
  • 2. 北京科技大学 绿色低碳钢铁冶金全国重点实验室,北京 100083||北京科技大学 自动化学院,北京 100083
  • 折叠

摘要

Abstract

The converter smelting process is characterized by multivariable,nonlinear,and strongly coupled dynamics,where oxygen blowing control significantly influences the composition and temperature of molten steel.To achieve precise forecasting of the oxygen-blowing volume,actual production data were first preprocessed via the boxplot method.Subsequently,prediction models for converter oxygen consumption were constructed on the basis of the back propagation neural network(BP)algorithm and the extreme learning machine(ELM)algorithm.The Bayesian optimization(BO)algorithm was employed to optimize the hyperparameters of the BP neural network algorithm and ELM algorithm.Finally,model performance was evaluated via multiple metrics.The results demonstrate that the BO-ELM prediction model outperforms the BO-BP model,achieving R2,RMSE,and MAE values of 0.721,137.176,and 113.622,respectively.The hit ratio within the error range of±300 m3 of oxygen consumption was 98.10%.

关键词

转炉/耗氧量预测/BP神经网络算法/极限学习机/贝叶斯优化

Key words

converter/oxygen consumption prediction/BP neural network algorithm/extreme learning machine/Bayesian optimization

分类

冶金工业

引用本文复制引用

丁志豪,信自成,张江山,刘青..基于贝叶斯优化机器学习的转炉耗氧量预测研究[J].铸造技术,2025,46(10):948-953,6.

基金项目

国家重点研发计划(2024YFB3713602) (2024YFB3713602)

国家自然科学基金(52374321) (52374321)

绿色低碳钢铁冶金全国重点实验室自主课题(41625030) (41625030)

铸造技术

1000-8365

访问量0
|
下载量0
段落导航相关论文