| 注册
首页|期刊导航|铸造技术|基于改进型随机森林算法的转炉终点成分实时预测模型开发

基于改进型随机森林算法的转炉终点成分实时预测模型开发

刘晓航 潘佳 刘畅 贺铸 李光强 王强

铸造技术2025,Vol.46Issue(10):954-963,10.
铸造技术2025,Vol.46Issue(10):954-963,10.DOI:10.16410/j.issn1000-8365.2025.5127

基于改进型随机森林算法的转炉终点成分实时预测模型开发

Development of a Real-time Endpoint Composition Prediction Model for BOF Steelmaking Based on an Improved Random Forest Algorithm

刘晓航 1潘佳 2刘畅 1贺铸 1李光强 1王强1

作者信息

  • 1. 武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉 430081||武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉 430081
  • 2. 武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉 430081||阳春新钢铁有限责任公司炼钢厂,广 东阳江 529600
  • 折叠

摘要

Abstract

In the basic oxygen furnace(BOF)steelmaking process,accurate determination of the molten steel composition is a critical step in determining the tapping point.Currently,this decision relies primarily on operator experience,supplemented by manual sampling and laboratory analysis.However,such an approach not only limits production efficiency but is also subject to human error.To reduce the influence of subjective judgment,an improved random forest(RF)model optimized by the grey wolf optimization(GWO)algorithm was proposed.Using a 120-ton converter at a steel plant as the research object,multiple process parameters were selected as input features,including the hot metal weight,scrap ratio,blowing time,Si,Mn and P contents of the hot metal,hot metal temperature,the converter operation parameters,and the consumption of oxygen,argon,and nitrogen.The model enables real-time prediction of the endpoint concentrations of C,Si,Mn,P and S in molten steel.The model was trained and dynamically updated via 1 783 sets of actual industrial data.Through hyperparameter tuning,the prediction time is reduced to 0.1~0.3 s,with a prediction accuracy exceeding 90%.While improving generalizability and stability,the model achieves fast and reliable prediction of steel composition and significantly reduces dependence on manual decision-making.

关键词

转炉炼钢/终点成分预测/随机森林/机器学习/智慧冶金

Key words

basic oxygen furnace steelmaking/endpoint composition prediction/random forest/machine learning/intelligent metallurgy

分类

冶金工业

引用本文复制引用

刘晓航,潘佳,刘畅,贺铸,李光强,王强..基于改进型随机森林算法的转炉终点成分实时预测模型开发[J].铸造技术,2025,46(10):954-963,10.

基金项目

国家自然科学基金重点资助项目(U22A20173) (U22A20173)

铸造技术

1000-8365

访问量0
|
下载量0
段落导航相关论文