| 注册
首页|期刊导航|铸造技术|面向钢表面缺陷的双模态目标检测方法

面向钢表面缺陷的双模态目标检测方法

李芹芹 王奎越 宋宝宇 宋君 马晓国

铸造技术2025,Vol.46Issue(10):973-981,9.
铸造技术2025,Vol.46Issue(10):973-981,9.DOI:10.16410/j.issn1000-8365.2025.5120

面向钢表面缺陷的双模态目标检测方法

Dual-Modal Target Detection Method for Steel Surface Defects

李芹芹 1王奎越 1宋宝宇 1宋君 1马晓国1

作者信息

  • 1. 鞍钢集团北京研究院有限公司,北京 102209
  • 折叠

摘要

Abstract

Steel surface defect detection is a core aspect of industrial quality control.Given the insufficient robustness of existing RGB single-modality-based defect detection models,which often suffer from high rates of false positives,false negatives,and incorrect detections of spatial morphological defects,the parallel multi-modal spatial-aware fusion YOLOv8(PMSF-YOLOv8)algorithm was proposed.This algorithm employs a dual-branch heterogeneous network to enhance the learning of RGB texture and depth spatial features.In the mid-fusion stage,the dual-modal feature fusion module(DFFM)was utilized to achieve adaptive fusion of multiscale features through dynamic weights.The NUE-RSDDS-AUG dataset was used for validation.The results show that the PMSF-YOLOv8 network model achieves a detection accuracy of mAP@0.5 of 98.6%,with a false alarm rate reduced by 2.1%compared with that of single-modality methods,striking a balance between "high accuracy and low false alarms".

关键词

双模态/钢表面缺陷检测/YOLOv8/特征融合/注意力机制

Key words

dual-modality/steel surface defect detection/YOLOv8/feature fusion/attention mechanism

分类

计算机与自动化

引用本文复制引用

李芹芹,王奎越,宋宝宇,宋君,马晓国..面向钢表面缺陷的双模态目标检测方法[J].铸造技术,2025,46(10):973-981,9.

基金项目

国家重点研发计划(2022YFB3304800) (2022YFB3304800)

铸造技术

1000-8365

访问量0
|
下载量0
段落导航相关论文