| 注册
首页|期刊导航|铸造技术|基于机器视觉技术的高强钢组织性能分析影响研究

基于机器视觉技术的高强钢组织性能分析影响研究

任姿颖 王军生 赵坦

铸造技术2025,Vol.46Issue(10):989-994,6.
铸造技术2025,Vol.46Issue(10):989-994,6.DOI:10.16410/j.issn1000-8365.2025.5144

基于机器视觉技术的高强钢组织性能分析影响研究

Research on the Impact of High-strength Steel Microstructure-property Analysis Based on Machine Vision Technology

任姿颖 1王军生 2赵坦3

作者信息

  • 1. 鞍钢集团北京研究院,北京 102211||海洋装备金属材料及其应用全国重点实验室,辽宁鞍山 114009
  • 2. 鞍钢集团北京研究院,北京 102211||海洋装备金属材料及其应用全国重点实验室,辽宁鞍山 114009||鞍钢集团钢铁研究院,辽宁鞍山 114009
  • 3. 海洋装备金属材料及其应用全国重点实验室,辽宁鞍山 114009||鞍钢集团钢铁研究院,辽宁鞍山 114009
  • 折叠

摘要

Abstract

The microstructure of high-strength steel(HSS),such as grain size and phase fraction,is a key factor determining its final mechanical properties,including toughness plasticity,and fatigue performance.Traditional metallographic analysis methods suffer from limitations such as strong subjectivity and insufficient quantification.To this end,it is necessary to explore and evaluate the application potential and impact of machine vision technology in the automatic recognition of HSS microstructures,quantitative analysis,and the study of its correlation with mechanical properties.A deep learning-based image segmentation and feature extraction algorithm was developed and optimized,achieving high-precision,automated recognition and quantitative characterization of complex microstructures.Furthermore,it focused on establishing machine learning models to predict key mechanical properties of HSS(tensile strength,elongation)using extracted microstructural feature parameters(e.g.,phase fraction,phase content).Through the implementation of these technologies,an analytical approach for influencing microstructure and property regulation is provided.

关键词

高强钢/机器视觉/显微组织/力学性能/深度学习/定量分析

Key words

high-strength steel/machine vision,microstructure/mechanical properties/deep learning/quantitative analysis

分类

金属材料

引用本文复制引用

任姿颖,王军生,赵坦..基于机器视觉技术的高强钢组织性能分析影响研究[J].铸造技术,2025,46(10):989-994,6.

铸造技术

1000-8365

访问量0
|
下载量0
段落导航相关论文