| 注册
首页|期刊导航|重庆科技大学学报(自然科学版)|基于RF-PSO-SVM的测井岩性识别方法研究

基于RF-PSO-SVM的测井岩性识别方法研究

朱斌 赵军龙

重庆科技大学学报(自然科学版)2025,Vol.27Issue(5):50-58,9.
重庆科技大学学报(自然科学版)2025,Vol.27Issue(5):50-58,9.DOI:10.19406/j.issn.2097-4531.2025.05.007

基于RF-PSO-SVM的测井岩性识别方法研究

Research on Logging Lithology Identification Method Based on RF-PSO-SVM

朱斌 1赵军龙1

作者信息

  • 1. 西安石油大学地球科学与工程学院/陕西省油气成藏地质学重点实验室,西安 710065
  • 折叠

摘要

Abstract

In response to the unsatisfactory application effects of conventional lithology identification methods,a li-thology identification model based on RF-PSO-SVM is proposed.Firstly,logging parameters of high importance are selected through the out-of-bag(OOB)principle in the RF algorithm.Secondly,the optimal parameter combination for the Support Vector Machine(SVM)model is obtained by optimizing different particle numbers based on the par-ticle swarm optimization(PSO)algorithm.Finally,the RF-PSO-SVM lithology identification model is established to conduct lithology prediction on 908 experimental data.Compared with the PSO-SVM model,SVM model,and RF model,it has a higher identification accuracy.The RF-PSO-SVM lithology identification model can effectively improve lithology identification results,providing an optimized approach for the application of machine learning al-gorithms in lithology identification.

关键词

测井/岩性识别/RF算法/SVM算法/PSO算法/RF-PSO-SVM模型

Key words

logging/lithology identification/random forest algorithm/support vector machine algorithm/particle swarm optimization algorithm/RF-PSO-SVM model

分类

地质学

引用本文复制引用

朱斌,赵军龙..基于RF-PSO-SVM的测井岩性识别方法研究[J].重庆科技大学学报(自然科学版),2025,27(5):50-58,9.

基金项目

国家自然科学基金面上项目"压力-应力耦合对前陆冲断带深层—超深层碎屑岩储层异常高原生孔隙的保存机制研究"(42172164) (42172164)

重庆科技大学学报(自然科学版)

1673-1980

访问量0
|
下载量0
段落导航相关论文