| 注册
首页|期刊导航|集成电路与嵌入式系统|面向智能感知的全模拟存内计算架构设计

面向智能感知的全模拟存内计算架构设计

王茼 任二祥 李汉文 骆丽 魏琦 乔飞

集成电路与嵌入式系统2025,Vol.25Issue(11):38-46,9.
集成电路与嵌入式系统2025,Vol.25Issue(11):38-46,9.DOI:10.20193/j.ices2097-4191.2025.0080

面向智能感知的全模拟存内计算架构设计

Design of an all-analog computing-in-memory architecture for smart sensing

王茼 1任二祥 1李汉文 2骆丽 1魏琦 3乔飞4

作者信息

  • 1. 北京交通大学电子信息工程学院,北京 100044
  • 2. 北方工业大学人工智能与计算机学院,北京 100144
  • 3. 清华大学精密仪器系,北京 100084
  • 4. 清华大学电子工程系,北京 100084
  • 折叠

摘要

Abstract

In resource-constrained near-sensor smart sensing systems,the deployment of deep neural networks(DNNs)faces severe challenges in terms of energy efficiency and area.Computing-in-memory(CIM)architecture circumvents the data movement overhead of the Von Neumann architecture by performing parallelized multiply-accumulate(MAC)operations in-situ within memory arrays,achie-ving significant improvements in both energy efficiency and area efficiency.However,as the bit-width and scale of MAC computation in-crease,high-precision analog-to-digital conversion and digital-to-analog conversion and long-distance data routing will lead to unacceptable energy and latency overheads,reducing the energy efficiency of CIM.Aiming at the above situation,this work proposes an all-analog CIM macro supporting multi-bit MAC.The design employs grouped row capacitors scheme for DAC-less parallel conversion of multi-bit input activation(IA).Integrated C-2C capacitor ladders perform weighting of signed multi-bit weights within the analog MAC core.The proposed macro is implemented in TSMC 22 nm process with a power consumption of 0.128 mW and an area of 0.06 mm2.The meas-ured throughput is 76.8 GOPS,achieving a high energy efficiency of 600 TOPS/W and an area efficiency of 1.28 TOPS/mm2.

关键词

智能感知/深度神经网络/多比特乘累加/存内计算/数/模转换/模/数转换/全模拟

Key words

smart sensing/DNN/multi-bit MAC/computing-in-memory/ADC/DAC/all-analog

分类

计算机与自动化

引用本文复制引用

王茼,任二祥,李汉文,骆丽,魏琦,乔飞..面向智能感知的全模拟存内计算架构设计[J].集成电路与嵌入式系统,2025,25(11):38-46,9.

基金项目

新疆维吾尔自治区重点研发计划项目(No.2022B01008-3) (No.2022B01008-3)

北京市自然科学基金资助(L253009) (L253009)

国家自然科学基金项目(No.62334006) (No.62334006)

集成电路与嵌入式系统

1009-623X

访问量0
|
下载量0
段落导航相关论文